统计机器学习--k近邻法

继续统计机器学习的学习记录--k近邻算法,本书唯一一个聚类算法,不过在原书中, 讲的依旧是分类的内容。(其实差不太多,具体的我也不写了,就记录分类的内容)

一. k近邻算法

k近邻算法简单、直观:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类。(说好的不抄书呢?好吧,就抄这么一句,k近邻算法也就是这样了,具体查书)。

注意,所谓的k,就是距离当前样本最近的k已知样本最多的类别是什么?那当前样本就是什么类别。

二. k近邻模型

k近邻法使用的模型实际上对应于特征空间的划分。模型由三个基本要素——距离度量、k值得选择和分类决策规则决定。-- 《统计机器学习》

感觉书里讲得还是非常清楚的。

首先要计算两个样本的距离,书中介绍了Minkowski距离,欧氏距离,曼哈顿距离等,这个距离是用来度量两个样本的相近程度的。

接着,在确定当前样本是哪个类别的时候,我们需要确定到底要参考多少个样本点,这里选择k值是比较讲究的,k值设置太小,比如说k=1,那么如果已知样本中有异常点,同时,给定样本点最近的点就是这个异常点,那么给定样本判定错误的几率将会非常高,大概就是偏听则暗了,但是,兼听则明在这里却不好用,我们依旧极端来讲,假如设置k=N(原样本数),那么当前样本则会被判定为原样本集中标签数量最多的标签,那么到底该咋办呢?大多数时候,我们一般会选择听取一些跟自己比较亲密的几个人的建议,那我们在设置k的时候也可以按这种策略去选择,当然,完全可以根据损失来选取k值。

三. k近邻法的实现:kd树

其实关于这个章节,有一部分我一直没有推理出来:用kd树的最近邻搜索。虽然没有推理出来,但这并不影响理解代码和使用,只能再慢慢理解了。(总感觉是某个数学上的知识我没有掌握的缘故)

整个算法的过程分为两个步骤:1. 构造平衡kd树。2. 用kd树的最近邻搜索

1. 构造平衡kd树: 这一步还是相对来说比较简单的,

1)首先,选择一个特征,根据特征值,取所有样本中的中位数作为切分点,将样本集切分成两部分。

2)在切分后的样本集中,选取下一个特征(上一层选择的是第一个特征的话,下一层就选择第二个特征,如果上一层是最后一个特征,那下一层就选择第一个特征),进行于1)相同的操作。

3)不断循环1)2)直到所有样本都分配完毕。

这个参考书上的例子更好理解。

2. 用kd树的最近邻搜索:由于我并不懂,我就不逼逼太多了,整个过程就是从顶向下找到一个较近节点,然后再不断反复从下向上,从上到下地去搜索最近节点,至于其中的截断原理我并不懂,我就不讲了。

四. 代码

1. 构造平衡kd树

代码的思路还是很清晰的,其实我觉得看代码比看文字更好懂。

主要讲一下CreateNode(split, data_set)函数。

这个函数是用来生成kd树的,采用递归的方式。

split为当前划分特征的下标。

data_set为当前需要划分的样本集(节点集)。

函数中的执行步骤,与书中和以上的说法一致,不再赘述。

# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt  # k维向量节点(k维空间中的一个样本点)
        self.split = split      # 整数(进行分割维度的序号)
        self.left = left        # 该结点分割超平面左子空间构成的kd-tree
        self.right = right      # 该结点分割超平面右子空间构成的kd-tree
        

class KdTree(object):
    def __init__(self, data):
        k = len(data[0])  # 数据维度
        
        def CreateNode(split, data_set):  # 按第split维划分数据集exset创建kdNode
            if not data_set: # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的那些维的数据,参数为需要获取的数据在对象中的序号
            # data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2    # //为python中的整数除法
            median = data_set[split_pos]      # 中位数分割点
            split_next = (split + 1) % k      # cycle coordinates
            
            # 递归的创建kd树
            return KdNode(median, split,
                         CreateNode(split_next, data_set[:split_pos]),      # 创建左子树
                         CreateNode(split_next, data_set[split_pos + 1:]))  # 创建右子树
        
        self.root = CreateNode(0, data)    # 从第0维分量开始构建kd树,返回根节点

# KDTree的前序遍历
def preorder(root):
    print(root.dom_elt)
    if root.left:  # 节点不为空
        preorder(root.left)
    if root.right:
        preorder(root.right)

 2. 用kd树的最近邻搜索:

emmmmm,等我读懂了,我想我会补充的。总感觉被这个东西打败了。。(呜呜呜~)

# 对构建好的kd树进行搜索,寻找与目标点最近的样本点
from math import sqrt
from collections import namedtuple

# 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point  nearest_dist  nodes_visited")

def find_nearest(tree, point):
    k = len(point) # 数据维度
    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负无穷
        
        nodes_visited = 1
        
        s = kd_node.split        # 进行分割的维度
        pivot = kd_node.dom_elt  # 进行分割的“轴”
        
        if target[s] <= pivot[s]:           # 如果目标点第s维小于分割轴的对应值(目标离左子树更近)
            nearer_node = kd_node.left      # 下一个访问节点维左子树根节点
            further_node = kd_node.right    # 同时记录下右子树
        else:                               # 目标离右子树更近
            nearer_node = kd_node.right     # 下一个访问节点为右子树根节点
            further_node = kd_node.left
        
        temp1 = travel(nearer_node, target, max_dist)  # 进行遍历找到包含目标点的区域
        
        nearest = temp1.nearest_point       # 以此叶节点作为"当前最近点"
        dist = temp1.nearest_dist           # 更新最近距离
        
        nodes_visited += temp1.nodes_visited
        
        if dist < max_dist:
            max_dist = dist      # 最近点将在目标点为球心,max_dist为半径的超球体内
            
        temp_dist = abs(pivot[s] - target[s])   # 第s维上目标点与分割超平面的距离
        if max_dist < temp_dist:                # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited) # 不相交则而可以直接返回,不用继续判断
        
        #---------------------------------------------------------------------------
        # 计算目标点与分割点的欧氏距离
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
        
        if temp_dist < dist:        # 如果“更近”
            nearest = pivot         # 更新最近点
            dist = temp_dist        # 更新最近距离
            max_dist = dist         # 更新超球体半径
        
        # 检查另一个子节点对应的区域是否有更近的点
        temp2 = travel(further_node, target, max_dist)
        
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist:        # 如果另一个子节点内存在更近距离
            nearest = temp2.nearest_point    # 更新最近点
            dist = temp2.nearest_dist        # 更新最近距离
        
        return result(nearest, dist, nodes_visited)

    return travel(tree.root, point, float("inf"))  # 从根节点开始递归    
        

五. 参考

1. 《统计机器学习》—— 李航

2. github:KNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值