机器学习入门之《统计学习方法》笔记整理——K近邻法

原文链接


目录

k近邻算法

  k近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。

  直接给出k近邻算法:

算法 (k近邻法)

输入: 训练数据集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) } T = \left \{ (x_1,y_1),(x_2,y_2),...,(x_n,y_n) \right \} T={(x1,y1),(x2,y2),...,(xn,yn)} , 其中 x i ∈ X = R n x_i \in X = \mathbb{R}^n xiX=Rn y i ∈ Y = { c 1 , c 2 , . . . , c K } , i = 1 , 2 , . . . , N y_i \in Y = \left \{ c_1,c_2,...,c_K \right \},i = 1,2,...,N yiY={c1,c2,...,cK},i=1,2,...,N ;实例特征向量 x x x

输出: 实例 x x x 所属的类 y y y .

(1) 根据给定的距离度量,在训练集 T T T 中找到与 x x x 最邻近的 k k k 个点,蕴盖这 k k k 个点的 x x x 的邻域记作 N k ( x ) N_k(x) Nk(x)

(2) 在 N k ( x ) N_k(x) Nk(x) 中根据分类决策规则(如多数表决)决定 x x x 的类别 y y y

y = a r g max ⁡ c j ∑ x i ∈ N k ( x ) I ( y i = c i ) , i = 1 , 2 , . . . , N ; j = 1 , 2 , . . . , K y=arg \max \limits_{c_j} \sum \limits_{x_i \in N_k(x)} I(y_i=c_i),i=1,2,...,N; j=1,2,...,K y=argcjmaxxiNk(x)I(yi=ci),i=1,2,...,N;j=1,2,...,K

其中, I I I 为指示函数,即当 y i = c i y_i=c_i yi=ci I I I 为1,否则 I I I 为0。

  k近邻法没有显式的学习过程。

k近邻模型

  k近邻算法使用的模型实际上对应于特征空间的划分,模型由三个基本要素——距离度量、k值的选择和分类决策规则决定。

###距离度量

  特征空间中俩个实例的距离是俩个实例点相似程度的反映,k近邻中一般使用欧氏距离。

  设特征空间 X X X n n n 维实数向量空间 R n \mathbb{R}^n Rn x i , x j ∈ X , x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) T , x j = ( x j ( 1 ) , x j ( 2 ) , . . . , x j ( n ) ) T x_i,x_j \in X,x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T,x_j=(x_j^{(1)},x_j^{(2)},...,x_j^{(n)})^T xi,xjX,xi=(xi(1),xi(2),...,xi(n))T,xj=(xj(1),xj(2),...,xj(n))T x i , x j x_i,x_j xi,xj L p L_p Lp 距离为

L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_p(x_i,x_j)=\left ( \sum \limits_{l=1}^{n} \left | x_i^{(l)}-x_j^{(l)} \right |^p\right )^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1

p ≥ 1 p\geq 1 p1

  当 p = 2 p=2 p=2 时,称为欧氏距离(Euclidean distance),即

L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_2(x_i,x_j)=\left ( \sum \limits_{l=1}^{n} \left | x_i^{(l)}-x_j^{(l)} \right |^2\right )^{\frac{1}{2}} L2(xi,xj)=(l=1nxi(l)xj(l)2)21

  当 p = 1 p=1 p=1 时,称为曼哈顿距离(Manhattan distance),即

L 1 ( x i , x j ) = ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ L_1(x_i,x_j)=\sum \limits_{l=1}^{n} \left |x_i^{(l)}−x_j^{(l)} \right| L1(xi,xj)=l=1nxi(l)xj(l)

  当$p=\infty $ 时,它是各个坐标距离的最大值,即

L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{\infty }(x_i,x_j)=\max \limits_{l} \left |x_i^{(l)}−x_j^{(l)} \right| L(xi,xj)=lmaxxi(l)xj(l)

  不同的距离度量所确定的最近邻点是不同的。

k值选择

  k值得选择会对k近邻算法的结果产生重大影响!!!
  如果选择的k值较小,就相当于用较小的的邻域中的训练实例进行预测。此时预测的结果会对近邻的实例点非常敏感。
  如果选择较大的k值,就相当于在较大的邻域中训练实例进行预测。此时,与输入实例较远的训练实例也会对预测起作用,使预测发生错误。
  如果k等于训练样本个数,此时将输入实例简单的预测为训练样本中最多的类。这时模型过于简单,会完全忽略训练样本中的大量有用信息,是不可取的。
  在应用中,k值一般选取一个比较小的数值,通常采用交叉验证法来选取最优的k值。

###分类决策规则

  k近邻算法中分类决策规则往往是多数表决,即由输入实例的k个邻近的训练实例中的多数类决定输入实例的类。

##k近邻法的实现:kd树

  kd树是一种对k维空间中的样本点进行存储以便对其进行快速检索的树形结构,它是一种二叉树,表示对k维空间的一个划分。构造k树相当于不断的用垂直于坐标轴的超平面去划分k维空间,构成一些列的k维超矩形区域,kd树的每个节点对应于一个k维的超矩形区域。

构造kd树

  通俗来讲,对于一个样本空间的样本点,计算每一个维度的方差,按照方差最大的那个维度来排序,因为方差大代表的是数据分散的比较开,这样分割会有更高的分割效率。取中位数作为根节点,小于中位数的样本点作为左子树,大于的作为右子树。重复进行,直到得到一棵完整的二叉树。

算法 (构造平衡kd树)

输入:k维空间数据集 T = { x 1 , x 2 , . . . , x N } T=\left \{ x_1,x_2,...,x_N \right \} T={x1,x2,...,xN} ,其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( k ) ) T , i = 1 , 2 , . . . , N ; x_i = (x_i^{(1)},x_i^{(2)},...,x_i^{(k)})^T, i=1,2,...,N; xi=(xi(1),xi(2),...,xi(k))T,i=1,2,...,N;

输出:kd树

(1) 开始:构造根节点,根节点对应于包含 T T T k k k 维空间的超矩形区域。

  选择中 x ( 1 ) x^{(1)} x(1) 为坐标轴,以 T T T x ( 1 ) x^{(1)} x(1) 坐标的中位数作为且分点,将根节点对应的超矩形区域切分为两个子区域,切分面为垂直于 x ( 1 ) x^{(1)} x(1) 轴的平面。将落在切分面上的点作为根节点,左子节点为对应坐标 x ( 1 ) x^{(1)} x(1) 小于切分点的区域,右子节点为对应坐标 x ( 1 ) x^{(1)} x(1) 大于切分点的区域。

(2) 重复:对深度为 j j j 的节点,选择中 x ( 1 ) x^{(1)} x(1) 为切分的坐标轴, l = j ( m o d    k ) + 1 l=j( \mod k )+ 1 l=j(modk)+1 ,以该节点的区域中所有实例的 x ( l ) x^{(l)} x(l) 坐标的中位数为切分点,将该节点对应的超矩形区域切分为两个子区域。

(3) 直到子区域内没有实例存在时停止。

例子 : 给定一个二维空间的数据集: T = { ( 2 , 3 ) T , ( 4 , 5 ) T , ( 9 , 6 ) T , ( 4 , 7 ) T , ( 8 , 1 ) T , ( 7 , 2 ) T } T=\left \{ (2,3)^T,(4,5) ^T,(9,6)^T,(4,7)^T,(8,1)^T,(7,2)^T \right \} T={(2,3)T,(4,5)T,(9,6)T,(4,7)T,(8,1)T,(7,2)T} 构造一个平衡kd树。(Wikipedia)

Python代码如下:

from collections import namedtuple
from operator import itemgetter
from pprint import pformat

class Node(namedtuple('Node', 'location left_child right_child')):
    def __repr__(self):
        return pformat(tuple(self))

def kdtree(point_list, depth=0):
    try:
        k = len(point_list[0]) # assumes all points have the same dimension
    except IndexError as e: # if not point_list:
        return None
    # Select axis based on depth so that axis cycles through all valid values
    axis = depth % k
 
    # Sort point list and choose median as pivot element
    point_list.sort(key=itemgetter(axis))
    median = len(point_list) // 2 # choose median
 
    # Create node and construct subtrees
    return Node(
        location=point_list[median],
        left_child=kdtree(point_list[:median], depth + 1),
        right_child=kdtree(point_list[median + 1:], depth + 1)
    )

def main():
    point_list = [(2,3), (5,4), (9,6), (4,7), (8,1), (7,2)]
    tree = kdtree(point_list)
    print(tree)

if __name__ == '__main__':
    main()

  我们得到以下结果:

((7, 2),
 ((5, 4), ((2, 3), None, None), ((4, 7), None, None)),
 ((9, 6), ((8, 1), None, None), None))

  得到如下所示的特征空间和kd树:

这里写图片描述

这里写图片描述

###搜索kd树

  给定一个目标点,搜索其最近邻,首先找到包含目标点的叶节点,然后从该叶节点出发,依次退回到其父节点,不断查找是否存在比当前最近点更近的点,直到退回到根节点时终止,获得目标点的最近邻点。

算法 (用kd树的最近邻搜索)

输入:已构造的kd树;目标点 x x x

输出: x x x 的最近邻。

(1) 首先找到包含目标节点的叶子结点:从根节点出发,按照相应维度比较,递归向下访问kd树,如果目标点x的当前维度的坐标小于根节点,则移动到左子节点,否则移动到右子节点,直到子节点为叶子节点为止。

(2) 以此叶节点为“当前最近点”

(3) 递归的向上回退,在每个节点进行以下操作:

  (a) 如果该节点保存的实例点距离比当前最近点更小,则该点作为新的“当前最近点”

  (b) 检查“当前最近点”的父节点的另一子节点对应的区域是否存在更近的点,如果存在,则移动到该点,接着,递归地进行最近邻搜索。如果不存在,则继续向上回退

(4) 当回到根节点时,搜索结束,获得最近邻点

kd树最近邻搜索实现,Python代码如下:

def get_distance(a, b):
    return np.linalg.norm(a-b)


def nn_search(test_point, node, best_point, best_dist, best_label):
    if node is not None:
        cur_dist = get_distance(test_point, node.node_feature)
        if cur_dist < best_dist:
            best_dist = cur_dist
            best_point = node.node_feature
            best_label = node.node_label

        axis = node.axis
        search_left = False
        if test_point[axis] < node.node_feature[axis]:
            search_left = True
            best_point, best_dist, best_label = nn_search(test_point, node.left_child,
                                                          best_point, best_dist, best_label)
        else:
            best_point, best_dist, best_label = nn_search(test_point, node.right_child,
                                                          best_point, best_dist, best_label)

        if np.abs(node.node_feature[axis] - test_point[axis]) < best_dist:
            if search_left:
                best_point, best_dist, best_label = nn_search(test_point, node.right_child,
                                                  best_point, best_dist, best_label)
            else:
                best_point, best_dist, best_label = nn_search(test_point, node.left_child,
                                                  best_point, best_dist, best_label)

    return best_point, best_dist, best_label

def nn(test_point, tree):
    best_point , best_dist, best_label = nn_search(test_point, tree, None, np.inf, None)
    return  best_label

小结

  KNN是一种lazy-learning算法,它不需要训练,分类的时间复杂度为N(训练样本的个数),引入kd树来实现KNN时间复杂度为logN。kd树更适合于训练样本树远大于空间维度的情况,如果训练样本数接近于空间维度,那么它的效率会迅速下降,几乎接近于线性扫描。

  KNN算法不仅可以用于分类,还可以用于回归。

原文链接:https://quanfita.cn/article/knn/
个人博客:https://quanfita.cn

参考文章

  1. 统计学习方法笔记(三)K近邻算法
  2. K近邻算法原理及实现(Python)
  3. K-d tree - Wikipedia
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Quanfita

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值