中国境内小麦的储粮害虫汇总

本文的图片和资料,主要参考著作《储藏物甲虫彩色图鉴》中国农业科学技术出版社,张生芳,陈洪俊,薛光华主编
说明:本文主要是自己学习需要用,整理了资料,并做一个记录,不做其他用途使用。

1.谷盗科

  1. 大谷盗

2.象甲科

  1. 阔鼻谷象
  2. 谷象
  3. 米象
  4. 玉米象

3.皮蠹科

  1. 小圆胸皮蠹
  2. 叶胸毛皮蠹
  3. 褐毛皮蠹
  4. 斜带褐毛皮蠹
  5. 短角褐毛皮蠹
  6. 黑毛皮蠹
  7. 暗褐毛皮蠹
  8. 小圆皮蠹
  9. 金黄圆皮蠹
  10. 四纹长皮蠹
  11. 谷斑皮蠹
  12. 黑斑皮蠹
  13. 条纹皮蠹
  14. 花斑皮蠹

4.锯谷盗科

  1. 米扁虫
  2. 锯谷盗
  3. 大眼锯谷盗

5.长蠹科

  1. 谷蠹

6.蛛甲科

  1. 褐蛛甲
  2. 拟裸蛛甲
  3. 裸蛛甲
  4. 日本蛛甲
  5. 短毛蛛甲
  6. 四纹蛛甲
  7. 棕蛛甲
  8. 黄蛛甲

7.露尾甲科

  1. 隆肩露尾甲
  2. 大腋露尾甲
  3. 隆胸露尾甲
  4. 酱曲露尾甲
  5. 细胫露尾甲
  6. 脊胸露尾甲
  7. 小露尾甲

8.扁谷盗科

  1. 锈赤扁谷盗
  2. 长角扁谷盗
  3. 微扁谷盗

9.拟扣甲科

  1. 墨西哥拟扣甲

10.拟步甲科

  1. 中华垫甲
  2. 黄粉虫
  3. 黑粉虫
  4. 黑菌虫
  5. 小菌虫
  6. 长头谷盗
  7. 亚扁粉盗
  8. 小粉盗
  9. 姬粉盗
  10. 阔角谷盗
  11. 细角谷盗
  12. 赤拟谷盗
  13. 杂拟谷盗
  14. 弗式拟谷盗
  15. 洋虫

11.小蕈甲科

  1. 波纹蕈甲
  2. 小蕈甲

总结

根据中国储粮生态区域中,将中国划为7个大区:http://www.360doc.com/content/12/0421/18/9700451_205469827.shtml
在这里插入图片描述
每个大区的粮虫分布为:
一:褐皮蠹,花斑皮蠹,黄蛛甲,褐蛛甲
二:黑拟谷盗,褐毛皮蠹,花斑皮蠹,黄蛛甲,褐蛛甲,日本蛛甲,谷象
三:玉米象,锯谷盗,大谷盗,赤拟谷盗
四:玉米象,麦蛾,印度谷螟,锯谷盗,大谷盗,赤拟谷盗
五:玉米象,谷蠹,麦蛾,锯谷盗,长角扁谷盗,大谷盗,赤拟谷盗
六:玉米象,谷蠹,麦蛾,锯谷盗,长角扁谷盗,大谷盗,赤拟谷盗
七:米象,玉米象,谷蠹,麦蛾,锯谷盗,长角扁谷盗,大谷盗,赤拟谷盗
所以:最常见的小麦中的粮虫为:玉米象,赤拟谷盗,麦蛾,锯谷盗,大谷盗,谷蠹,长角扁谷盗,花斑皮蠹,黄蛛甲,褐蛛甲。
做了一些图片,有很多虫子长得太像了
在这里插入图片描述

### 深度学习用于小麦害虫检测的方法、模型及研究 #### 方法概述 农业病虫害的早期检测对于保障作物健康至关重要。传统方法依赖于人工巡查,这种方式存在工作量大且易错过的缺点[^1]。现代技术引入了计算机视觉和深度学习手段来提升检测效率与精度。具体到小麦害虫监测上,主要流程涉及图像获取、预处理、特征提取以及分类预测四个阶段。 #### 数据收集与标注 构建有效的小麦害虫检测系统首要任务是建立高质量的数据集。这包括但不限于拍摄大量带有不同类型害虫侵害痕迹的小麦植株照片,并由专家团队对这些图片进行细致标记,确保每张图都附带准确标签说明其中存在的害虫种类及其位置信息。此过程需遵循严格标准以保证后续算法训练所需数据的质量可靠性和多样性[^2]。 #### 模型选择与优化 针对小麦这类特定应用场景下的目标识别问题,可以选择多种先进的物体探测框架作为基础架构来进行定制化开发。例如NanoDet因其轻量化设计而适合部署在资源受限环境中;R-CNN系列则以其强大的定位能力著称,在复杂背景下仍能保持较高召回率。除此之外,还可以考虑采用卷积神经网络(CNN),特别是那些专门为解决细粒度分类难题所设计变体版本,它们擅长捕捉细微差别并作出精确区分[^3]。 ```python import torch from torchvision import models, transforms from PIL import Image # 加载预训练模型 model = models.resnet50(pretrained=True) # 设置转换操作 transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), ]) def predict(image_path): img = Image.open(image_path) input_tensor = transform(img).unsqueeze(0) # 添加批次维度 with torch.no_grad(): output = model(input_tensor) _, predicted_idx = torch.max(output, 1) return predicted_idx.item() ``` 上述代码展示了如何加载一个预先训练好的ResNet-50模型并对单幅输入图像执行推理运算的过程。虽然这里展示的是通用图像分类案例而非专门面向小麦害虫辨识的任务实例,但其基本原理相同——即先准备好待测试样本文件路径image_path,接着调用相应函数完成类别推测动作。 #### 实验验证与评估指标 为了衡量所提方案的实际效能表现,应当开展一系列对照实验对比不同条件下各参试系统的性能差异。常用评价参数涵盖查准率(Precision)、召回率(Recall)、F1得分(F1 Score),还有平均绝对误差(Mean Absolute Error, MAE)等统计学测量值。通过对多轮迭代过程中积累下来的结果数据分析总结规律特点,进而指导下一步改进方向的选择调整策略。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值