点互信息(PMI)和正点互信息(PPMI)

最近在看代码的时候,发现论文用到了PPMI,索性这里记录一下两个概念:

PMI(点互信息)

用来衡量两个事物之间的相关性

公式如下

如何理解?

在概率论当中,如果说x与y两个变量无关,那么p(x,y)就等于p(x)p(y)

如果说x与y越相关,那么p(x,y)p(x)p(y)的比值就越大

为了更好理解,这里有一个例子:

分母19是所有的词对共同出现的总次数(1+1+1+1+2+1+1+1+6+4)

这里的例子进行理解的时候,先是红色框的0.32,是根据当前词对(information,data)的次数6除以所有的词对数目(19)得来的

0.32 = 6/19

蓝色框的0.58是当前词,information的出现的总次数(11)除以总词对数(19)得来的

0.58=11/19

同理,绿色框也一样

PPMI(正点互信息)

 

正点互信息只是比点互信息多了一个判断最大值的操作,小于0的值都改成了0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值