深度学习(Deep Learning, DL)简介
什么是深度学习?
深度学习(Deep Learning, DL)是机器学习的一个子领域,主要使用多层神经网络来处理复杂的数据和任务。深度学习通过模拟人脑的神经网络结构,能够自动提取特征并进行高效的模式识别和预测。
机器学习与深度学习的关系
机器学习是人工智能(AI)的一个分支,而深度学习是机器学习的一个子集。
深度学习的核心概念
神经网络(Neural Network)
神经网络是深度学习的基础结构,由多个层级组成,包括输入层、隐藏层和输出层。每一层由多个神经元(节点)组成,这些神经元通过权重和偏置连接在一起。
前向传播(Forward Propagation)
前向传播是指数据从输入层经过隐藏层传递到输出层的过程。在这个过程中,输入数据经过每一层的加权求和和激活函数处理,最终得到输出结果。
反向传播(Backpropagation)
反向传播是指通过计算损失函数的梯度,将误差从输出层反传到输入层,并更新权重和偏置&#