最大流和最小割问题

这里先介绍 mincut maxflow, 为介绍 Grabcut 打下基础。 Grabcut 可以用在图像分割和文字二值化中。

 

首先介绍Mincut问题

这部分内容主要翻译自[1],可以看原版理解的更深.由于个人没有看过中文教材,因此可能一些专业术语翻译的不太对,敬请见谅。

一个有向图,并有一个源顶点(source vertex)和目标顶点(target vertex.边的权值为正,又称之为容量(capacity.如下图


一个st-cut(简称割cut)会把有向图的顶点分成两个不相交的集合,其中s在一个集合中,t在另外一个集合中(在图像分割中,你可以将s理解成前景,t理解成背景)。

这个割的容量(capacity of the cut就是AB所有边的容量和。注意这里不包含BA。参见下面几幅图。最小割问题就是要找到割容量最小的情况


 


 

 


 

可以想象成某某国家要控制网络,使得国民不能跟外面联络,S代表某个国家,t代表其余的世界。而每条边上代表着是带宽,带宽越大,肯定建设成本也越大,在进行cut的时候当然希望能达到完全断开的效果但又能破坏越少的基建设施,这就是最小割问题。

 

2 Maxflow

接着介绍maxflow问题。跟mincut问题类似,maxflow要处理的情况也是一个有向图,并有一个原顶点(source vertex)和目标(target vertex.边的权值为正,又称之为容量(capacity.如下图


 

 

一个st-flow(简称flow)是为每条边附一个值,这个值需要满足两个条件

1  0<=边的flow <<边的capacity

除了st外,每个顶点的inflow要等于outflow

见下图,其实这个很好理解,可以想象成水管或者电流。

 


一个flow的值(value of the flow)就是tinflow.Maxflow就是找到这个最大值


 


 

后面会发现Mincutmaxflow的问题是对偶的,解出了maxflow也就知道了mincut的解。

现在先介绍一种解maxflow的算法Ford-Fulkerson,为了方便,简称FF算法。

1)初始化,所有边的flow都初始化为0


 

2)沿着增广路径增加flow。增广路径是一条从st的无向路径,但也有些条件,可以经过没有满容量的前向路径(st)或者是不为空的反向路径(t->s)


 


 


 


 


 

opencv用的是文献[2]的算法。这里先不做介绍。

3 maxflow-mincut理论证明对偶性(optional

首先定义一个概念net flow,经过一个割cut(A,B)net flow等于从AB的边flow的和减去从BAflow的和。

 

然后我们就有了flow-value引理f为任意的流,(A,B)为任意的割,那么f的值 value of flow(也就是tinflow)等于经过(A,B)的netflow.

 

如下图,value offlow = 8+9+10 = 27 , 而割的net flow = 8+2+7-2+12 = 27.要证明这个引理可以用数学归纳法。


 

Weak duality(弱对偶)f为任意的流,(AB)为任意的割,那么Valueof flow <= capacity of cut(A,B)

因为cut(A,B)等于从AB流量,而value offlow等于cutAB)的netflow,还得减去从BA边的流量。


那么现在我们可以引出两个定理:

增广路径定理(Augmenting Path theorem:一个流f是最大流当且仅当没有增广路径。

最小割最大流定理(Maxflow-mincut theorem:Maxflow的值等于最小割的容量。

要证明上面的定理,只要证明下面三个条件是等价的就可以了:

1)存在一个割的容量等于flow f的值

2f是最大流

3)对于f没有增广路径

首先我们证明(1->2。假设我们有一个割(A,B)的容量等于f的值,那么利用弱对偶的关系,其他流的值<=(A,B)的容量,而由于1的假设,(AB)的容量等于f的值,因此得到其他流的值都小于f的值,从而(2)成立

 

接着证明(2->(3)。我们来证明它的逆否命题。对于f如果还有还有增广路径,那f不是最大流,这很显然,如果按照FF算法的话,我们还可以增加flow f的值,因此f就不会是最大流,因此逆否命题成立,也就代表(2->(3)成立。

 

最后证明从(3->(1)。让割(A,B)满足这么一个条件:sA中,且A中的顶点通过一些无向的边连接而成,这些边要么是不是满的前向边要么是非空的反向边。如下图中加粗的边。

那么根据定义,sA中,由于没有增广路径,因此tB中。

由于这个割的BA的边流量全是0

这个割的容量 沿着这个割的netflow(AB边的流量-BA边的流量)

又根据flow-value引理,netflow = value of low,因此推出(1.


 

最后我们怎么根据最大流的解得到最小割的解呢,就是和证明( 3 ->(1) 中的一样让割( A,B )满足这么一个条件: s A 中,且 A 中的顶点通过一些无向的边连接而成,这些边要么是不是满的前向边要么是非空的反向边

最近在看maxflow相关的资料,本文主要介绍下自己对最大流和最小割的理解。最大流本来是网络流方面的算法,后来在计算机视觉中也得到广泛的应用,如图割。我觉得要理解一个算法首先要从起源开始,然后再去泛化问题、建立模型,最后才是解决之。本文是以一个新手的角度去理解算法。
首先从最简单的开始,先看一幅图:
这里写图片描述
有3个节点S,a,T,边[S,a]的容量是10,边[a,T]的容量是5,假设从S处要传送数据到T,问最大传送数据量是多少?应该是min(10,5)=5.如果超出5,[a,T]边容不下,因此传不过去,此时的最大流量就是5,[a,T]边就是该图的一条最大流。该图可以想象成从S到T通水,需要修建水管,a是中间站点,S到a修建的水管可以容纳下10单位的水量,a到T可容下5单位的水量,现在有个人不想让S到T通水了,那么他得要切割水管,那么应该切割哪条水管呢?假设切割水管付出的代价和水管容量成正比。显然,他需要切割a到T的水管,而不会切割S到a的水管,此时的割是最小割,容量是5,最大流是5,所以最大流=最小割。当然这个例子太简单,不能说明普遍问题。
来个稍微复杂的例子:
这里写图片描述
从S到T,中间经过a,b两节点,问此时的最大流是多少?
首先找一条从S到T的路径[S,a,t],该路径的最大流量是min(2,3)=2,因为[S,a]上面的容量已经被用了,所以路径[S,a,b,t]就行不通了,割去[S,a]后图变成了以下形式:
这里写图片描述]![这里写图片描述
该图叫做残留网络或者叫残留图,此时再找从S到t的路径[S,b,t],路径的最大流量是min(3,6)=3.割去[b,t]后,图如下:
这里写图片描述
此时就不存在从S到t的可行路径了,则结束最大流的查找。此时的最大流是2+3=5,被割的边容量和是2+3=5,即最大流=最小割。
两个例子我们已经能理解最大流和最小割大体的含义了,也发现最大流的确和最小割是相等的。只从这两个小例子就证明最大流和最小割相等是绝对不严格的,严格的数学证明可google相关资料。回头思考下,最大流到底是什么?如果以送货为例,在可行的情况下,从一个节点到另一个节点所能送达的最大货量即为最大流。打个比方,假设从S处开始放弹珠,让其自动滚到t处,箭头方向为下坡路,在不考虑时间和空间(即把弹珠想象成质点)的情况下,路径中能容纳的最大弹珠量即为最大流量,最小割就是把容纳的弹珠量和容量相同的边都割去,得到的割即为最小割,显然最大流=最小割,因为最大流量完全由路径和容量决定。割去这些边之后,弹珠是没法从S滚落到t的。

  • 12
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值