caffe中用自己的数据训练网络之生成lmdb数据库

6人阅读 评论(0) 收藏 举报
分类:

在编译好的caffe中,其tools/Release下有一个convert_imageset.exe的文件,其是用来将自己准备的图像数据集进行转化的。在convert_imageset.exe所在的文件夹下执行convert_imageset命令会发现有这样的结果:
这里写图片描述
由此可见,该命令的使用格式为:

convert_imageset    [FLAGS]    rootfolder/   listfile    db_name

FLAGS:FLAGS为一些可选参数设置,大概包括如下的一些参数:
–gray= bool类型,默认为false,设置为true时将图像当作灰度图像来处理,否则当作彩色图像处理。
–shuffle= bool类型,默认为false,设置为true时则代表将图像集中的图像顺序随机打乱。使用这一操作的目的是使得图像分布均衡。
–backend= string类型,可以取值的集合为{“lmdb”,“leveldb”},默认为“lmdb”,代表采用何种形式的来存储转换后的数据。
–resize_width= int32类型,默认为0,为非0值时代表图像的宽度将resize成resize_width。
–resize_height= int32类型,默认值为0,如果为非0值代表图像的高度将被resize成resize_height。
–check_size= bool类型,默认为false,为true时在处理数据时将检查每一条数据的大小是否相同。
–encoded= bool类型,默认为false,为true时代表将存储编码后的图像,具体采用的编码方式将由encode_type决定。
–encoded= string类型,默认为“”,用于指定使用何种编码方式存储编码后的图像,取值为编码方式的后缀,如”png”等。

rootfolder/:表示原始图像所在的文件夹,必须参数。需要注意的是,这个文件路径的设置需要看listfile中的值的情况。比如listfile中的路径是从rootfolder(不包括)下开始的,则直接设为rootfolder,否则将根据listfile中的路径的父目录来设置rootfolder。比如:C:\train下由几个分好类的文件夹,分别为male文件夹(其中全为男孩图像)和female文件夹(其中全为女孩文件夹),假设rootfolder为C:\train,则在listfile中的标签路径就应该为:“male\图像名.后缀 类别”或“female\图像名.后缀 类别”这样的格式。
listfile:该参数表示labels(标签)文件,必须参数。其在Windows中往往是.txt文件,文件中的格式为“male\图像名.后缀 类别”或“female\图像名.后缀 类别”这样的格式。需要注意的是,该文件中的标签需要与rootfolder拼接的上,即rootfolder+该标签能形成对应图像的位置。
db_name:表示lmdb或leveldb文件的文件夹,一般为…\train_lmdb或…\test_lmdb,在生成之后,该文件之下会生成对应的数据库data.mdb和lock.mdb。

值得注意的是,在有时候使用convert_imageset命令时,其db_name路径中如果存没有命名为.lmdb的字样,则在common.cpp中的18行进行检查时可能就会出现如下错误:
这里写图片描述
所以,在出现这样的问题时,可以将db_name改为train_lmdb类似的名字,如:
这里写图片描述

查看评论

windows10+GPU下caffe数据集Lmdb格式制作+训练自己数据集

最近做人脸识别项目,想用到caffe训练自己的数据,电脑操作系统为win10+GPU,这里对caffe-windows配置、数据集制作、训练数据都做一些介绍。(无GPU配置的看我这个博客)。如果你用的...
  • cuixing001
  • cuixing001
  • 2017-10-21 22:19:07
  • 518

windows下caffe训练自己的图片前期准备lmdb

已经接近崩溃状态…… 8分类,准确率一直低于0.5并且准确率一直在震荡,从0升到0.5在退回去…… (一)准备图片 ①lmdb/leveldb格式 a) 使用编译出来的convert_imag...
  • sudakuang
  • sudakuang
  • 2016-08-24 15:37:45
  • 1957

利用Caffe创建自己的lmdb数据集

用Caffe进行模型训练时,除了用现有的公开数据集(如MNIST, CIFAR等),有时候我们还需要创建自己的数据集进行训练。本篇博客讲的就是如何利用Caffe中的模块创建自己lmdb数据集。...
  • sinat_34474705
  • sinat_34474705
  • 2017-08-11 18:03:29
  • 1350

Caffe中LMDB接口实现多标签数据准备及训练

Caffe中使用LMDB实现多标签数据的准备
  • u010599509
  • u010599509
  • 2016-06-30 16:01:16
  • 8024

如何使用ssd训练自己的数据(windows下)

如何使用ssd训练自己的数据(windows下)
  • buaalei
  • buaalei
  • 2017-02-14 11:12:16
  • 4472

SSD安装及训练自己的数据集

最近一直在搞object detection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti, 识别速度大概是15fps.最...
  • zhang_shuai12
  • zhang_shuai12
  • 2016-08-28 17:58:58
  • 29640

Caffe学习笔记(二):使用Python生成caffe所需的lmdb文件和txt列表清单文件

转载请注明作者和出处: http://blog.csdn.net/c406495762 Python版本:Python2.7 运行平台:Ubuntu14.04 最后修改时间:2017.4.20...
  • c406495762
  • c406495762
  • 2017-03-29 21:08:31
  • 5455

caffe训练自己的数据

1。准备数据 参:学习笔记3 用自己的数据训练和测试-薛开宇 2。调整图像大小到256×256 3。生成leveldb 数据。将 create_imagenet.sh文件从imagenet文件夹中拷过...
  • baobei0112
  • baobei0112
  • 2015-07-22 14:15:37
  • 2654

图像数据转换为levedb或者lmdb+caffe上跑自己的数据

JLU-IPVR 听笙 图像数据转换为levedb或lmdb 在我们学习深度学习的过程中,难免要去使用自己的原始数据进行试验,验证一些网络模型,我们遇到的图片文件格式如:jpg,jpeg,png...
  • tomato_ljl
  • tomato_ljl
  • 2018-01-27 10:14:29
  • 65

Caffe 跑自己的数据和训练

本文主要是参考了文末资料中的步骤,自己重新跑了一遍,大部分和上述资料中的相同,有些补充和改动.Caffe提供mnist, cifar10, ImageNet1000等数据库,对于mnist和cifar...
  • fengmengdan
  • fengmengdan
  • 2015-12-04 21:53:54
  • 8486
    个人资料
    持之以恒
    等级:
    访问量: 2791
    积分: 280
    排名: 27万+