【LeetCode - 317】离建筑物最近的距离

1、题目描述

在这里插入图片描述

2、解题思路

  本题需要对每一个建筑物分别进行一次 BFS。

  BFS 的作用是计算每一个空格到这个建筑物的距离。

  定义一个数组 totalDist[][],其中 totalDist[i][j] 表示坐标 (i,j) 的空格到达所有建筑物的距离之和。

  因此,每一次 BFS,都是对 totalDist[][] 进行累加的过程。

  这里还需要注意一点的是:建筑物个数为 n,因此每一个空格都会被遍历 n,次,因为要计算空格到达每一个建筑物的距离嘛。

  因此,我们需要定义一个变量 mark = 0,初始时,空格是用 mark 表示,当我计算完一个建筑物时,mark–,所有的空格变成用 -1 表示了。

  这样做就是为了解决“BFS时空格不能重复遍历,但是遍历建筑物时,空格又要重复使用”的矛盾。

3、解题代码

class Solution {
        private final int[][] directions = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};

    // 思路:
    //  (1) 从每一个建筑物开始进行广度优先搜索
    //  (2) 在搜索的同时计算每一个空格到这个建筑物的距离
    //  (3) 在搜索的同时将每一个空格到每一个建筑物的距离进行累加,得到每个空格到所有建筑物的距离
    //  (4) 取空格到所有建筑物的最小距离
    public int shortestDistance(int[][] grid) {
        int rows = grid.length;
        if (rows == 0) {
            return 0;
        }
        int cols = grid[0].length;
        int[][] totalDist = new int[rows][cols];
        int ans = Integer.MAX_VALUE;
        // 用于标记空地
        int mark = 0;
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                // (1) 从每一个建筑物开始进行广度优先搜索
                if (grid[i][j] == 1) {
                    ans = bfs(grid, rows, cols, i, j, mark, totalDist);
                    // 每次遍历搜索完一个建筑物,这个标记减一,表示所有空地被遍历一次了
                    mark--;
                }
            }
        }
        return ans;
    }

    private int bfs(int[][] grid, int rows, int cols, int x, int y, int mark, int[][] totalDist) {
        int ans = Integer.MAX_VALUE;
        Queue<int[]> queue = new LinkedList<>();
        // 队列中每个数组有 3 个元素,分别表示:
        // 第一个元素和第二个元素表示坐标值
        // 第三个元素表示当前坐标到建筑物的距离
        // 第三个元素的初始值为 0 的原因是:一开始的时候从当前建筑物到当前建筑物的距离是 0
        queue.add(new int[]{x, y, 0});
        while (!queue.isEmpty()) {
            int[] curPoint = queue.poll();
            int currDist = curPoint[2];
            for (int[] direction : directions) {
                int newX = curPoint[0] + direction[0];
                int newY = curPoint[1] + direction[1];
                if (newX >= 0 && newX < rows && newY >= 0 && newY < cols && // 不超出边界
                        grid[newX][newY] == mark) { // 当前点是空地
                    // (2) 在搜索的同时计算每一个空格到这个建筑物的距离
                    int dist = currDist + 1;
                    // (3) 在搜索的同时将每一个空格到每一个建筑物的距离进行累加
                    totalDist[newX][newY] += dist;
                    // (4) 取空格到所有建筑物的最小距离
                    ans = Math.min(ans, totalDist[newX][newY]);
                    queue.add(new int[]{newX, newY, dist});
                    // 当前点处理过了
                    grid[newX][newY]--;
                }
            }
        }
        return ans == Integer.MAX_VALUE ? -1 : ans;
    }
}
  • 2
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值