LDA(Latent Dirichlet Allocation,潜在狄利克雷分配)是一种常用于文本挖掘和主题建模的统计模型。它能够从大量文本数据中提取出隐含的主题结构,使得我们能够理解文档集合中不同主题的分布和各个主题下的词汇分布。本文借助一些工具软件,轻松实现基于LDA主题建模的文本分析。
1. 数据准备
-
数据采集:采集需要分析的文本数据,可以来自新闻文章、社交媒体、学术论文等。下面推荐几款社交媒体用户评论采集软件。
采集社交媒体用户评论数据
-
数据预处理:在数据分析项目中,原始数据往往是不规则、不完整或包含大量噪声的。预处理的目标是提升数据质量,消除数据中的异常、重复、缺失或无关信息,从而确保后续分析的有效性和准确性。下面推荐几款数据分析预处理软件。
中文数据分析文本预处理软件
2. LDA主题模型分析
-
确认最优主题数:在LDA主题模型中,模型的整体性能需要不断测试并评价,从而优化算法的建模能力,最常用的评价方法是计算困惑度和一致性。困惑度指的是在文本分析中,训练出来的模型识别某些文档包含哪些主题具有不确定性,因此数值越低,不确定性就越小,则最后的聚类结果就越好。一致性是另一种主题数选择的模型,是衡量主题质量有效的方法,也是估计主题数的重要技术之一。下面推荐一款主题一致性和困惑度评价软件。
-
LDA主题模型结果输出:依据建模主题结果中的关键词及其权重和逻辑关系 ,输出LDA主题表格、关系图、气泡图、主题强度、主题演化桑基图、折线图、热力图等可视化图表。下面推荐几款LDA主题模型分析软件。
LDA主题表格、关系图、气泡图软件
LDA主题强度和演化桑基图软件
LDA主题演化折线图热力图软件
3. 文本情感倾向分析
-
中文情感分析:针对用户评论数据,我们可以利用情感分析技术对其进行分析,总结出大量的有价值信息。推荐一款软件,可以自定义 正面(积极情感)词、负面(消极情感)词、否定(情感反转)词、程度(情感强弱)词、停用词 等词典,分析导入语料的情感倾向,导出情感分析表和情感分析图。下面推荐一款中文情感分析软件。
中文情感分析软件
4. 语义共现关系网络分析
-
通过构建词语间的共现关系网络,揭示文本中词语的相互关联性和语义结构,有助于深入理解文本内容、挖掘潜在主题和关联信息,以及进行文本分类、关键词提取等任务。下面推荐两款共现矩阵网络关系图生成软件。
共现矩阵网络关系图生成软件V1
共现矩阵网络关系图生成软件V2
5. 词频统计和词云图可视化
-
词频统计:根据导入的文本文件(支持导入TXT文本文件、WORD文本文件、EXCEL文本文件),一键分析词频和词性。下面推荐一款词频统计分析软件。
词频统计分析软件
-
词云图可视化:根据导入的TXT文本或者EXCEL词频表格,一键生成词云图。下面推荐一款词云图制作软件。
词云图生成器软件
分析软件下载地址
1、本文数据分析软件下载地址:百度网盘 请输入提取码