证明:标准二元正态分布各向同性

问题来源 - link
在这里插入图片描述

设标准二元正态分布 ( X , Y ) (X,Y) (X,Y)概率密度为:
p ( x , y ) = 1 2 π exp ⁡ ( − x 2 + y 2 2 ) p(x,y)=\frac{1}{2\pi}\exp(-\frac{x^2+y^2}{2}) p(x,y)=2π1exp(2x2+y2)
设夹角 Θ = arctan ⁡ ( Y / X ) \Theta=\arctan(Y/X) Θ=arctan(Y/X). 现在证明 Θ ∼ U ( 0 , 2 π ) \Theta\sim U(0,2\pi) ΘU(0,2π)服从均匀分布:
Θ \Theta Θ的累积概率分布,即在坐标系 x O y xOy xOy内的区域 D = { θ < Θ } D=\{\theta<\Theta\} D={θ<Θ}上进行二重积分:
P ( θ < Θ ) = ∯ D p ( x , y ) d x d y = ∫ 0 Θ d θ ∫ 0 ∞ p ( x ( r , θ ) , y ( r , θ ) ) r d r P(\theta<\Theta)=\oiint_D p(x,y) dxdy=\int_0^\Theta d\theta\int_0^{\infin}p(x(r,\theta),y(r,\theta))rdr P(θ<Θ)= Dp(x,y)dxdy=0Θdθ0p(x(r,θ),y(r,θ))rdr
以上用到极坐标变换
{ x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases} x=r\cos{\theta}\\ y=r\sin{\theta} \end{cases} {x=rcosθy=rsinθ
于是
∫ 0 ∞ p ( x ( r , θ ) , y ( r , θ ) ) r d r = ∫ 0 ∞ 1 2 π exp ⁡ ( − r 2 2 ) r d r = 1 2 π ∫ 0 ∞ exp ⁡ ( − r 2 2 ) d r 2 2 = − 1 2 π exp ⁡ ( − u ) ∣ 0 ∞ = 1 2 π \int_0^{\infin}p(x(r,\theta),y(r,\theta))rdr=\int_0^{\infin}\frac{1}{2\pi}\exp(-\frac{r^2}{2})rdr\\ =\frac{1}{2\pi}\int_0^{\infin}\exp(-\frac{r^2}{2})d\frac{r^2}{2}=-\frac{1}{2\pi}\exp(-u)|_0^\infin=\frac{1}{2\pi} 0p(x(r,θ),y(r,θ))rdr=02π1exp(2r2)rdr=2π10exp(2r2)d2r2=2π1exp(u)0=2π1

P ( θ < Θ ) = ∫ 0 Θ 1 2 π d θ P(\theta<\Theta)=\int_0^\Theta \frac{1}{2\pi}d\theta P(θ<Θ)=0Θ2π1dθ
θ \theta θ的概率密度为
p ( θ ) = { 1 2 π θ ∈ [ 0 , 2 π ] 0 o t h e r w i s e p(\theta)= \begin{cases} \frac{1}{2\pi}& \theta \in[0,2\pi]\\ 0& otherwise \end{cases} p(θ)={2π10θ[0,2π]otherwise
即均匀分布.
以上证明用到了多重积分的知识,可在考研数一资料中查到

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值