Multicore-TSNE

TSNE

  • t-Distributed Stochastic Neighbor Embedding (t-SNE) 是一种高维数据的降维方法,由Laurens van der Maaten和Geoffrey Hinton于2008年提出,通常用于数据可视化。其大致原理是在低维(通常是2D或3D)空间中保留高维空间中的距离关系

使用scikit-learn库

使用Multicore-TSNE库

  • Multicore-TSNE的项目地址:
    https://github.com/DmitryUlyanov/Multicore-TSNE

  • 优点:

    • 使用方法与与scikit-learn库基本一致
    • 计算速度相对于scikit-learn库可大幅提升
  • 缺点:

    • 功能相比scikit-learn库大幅减少
    • 默认仅实现了基于欧式距离的降维计算

安装方法

  • 方法1:直接pip安装
pip install MulticoreTSNE
  • 方法2:源码编译安装
git clone https://github.com/DmitryUlyanov/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .

基本使用方法

  • Multicore-TSNE库的基本使用方法非常简单,与scikit-learn库基本一致:
from MulticoreTSNE import MulticoreTSNE as TSNE

tsne = TSNE(n_jobs=4)
Y = tsne.fit_transform(X)

采用不同的距离度量

  • Multicore-TSNE默认仅实现了基于欧式距离的降维计算,然而,很多时候,我们希望采用其他距离度量。幸运的是,根据 https://github.com/DmitryUlyanov/Multicore-TSNE/issues/49 中的回答,已有大佬基于Multicore-TSNE库进行了二次开发,其中可以采用的距离度量包括:
    • Euclidean distance
    • Squared euclidean distance
    • Angular distance
    • Cosine distance (not a real metric)
    • Precomputed distance marix
  • 安装方式:源码编译安装
git clone https://github.com/asanakoy/Multicore-TSNE.git
cd Multicore-TSNE/
pip install .
  • 以手动计算特征向量之间的余弦距离为例:
from MulticoreTSNE import MulticoreTSNE as TSNE
from sklearn.metrics.pairwise import cosine_similarity

# 计算余弦相似度矩阵
similarity_matrix = cosine_similarity(feats.cpu().numpy())

# 将余弦相似度转换为距离矩阵
distance_matrix = 1 - similarity_matrix

tsne = TSNE(n_jobs=4, metric="precomputed", random_state=42)
X_tsne = tsne.fit_transform(distance_matrix)

其他资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值