- 图卷积Autoencoder。自动编码器采用图A的结构和节点内容X作为输入,学习一个潜在表示Z,然后从Z重建图结构A。
- 对抗的正规化。对抗网络通过对抗训练模块迫使潜在码匹配先验分布,该模块区分当前潜在码zi∈Z是来自编码器还是来自先验分布。
1、图编码器
为了在一个统一的框架中表示图结构A和节点内容X,我们开发了一种图卷积网络(GCN)的变体作为图编码器。我们的图卷积网络(GCN)将卷积的运算扩展到谱域的图数据,并通过谱卷积函数𝑓(𝑍𝑙,𝐴|𝑊𝑙)学习分层变换:
每一层的图卷积可以如下表示:
编码器:
变分图编码器由一个推理模型定义:
2、图解码器
图自编码器模型:
3、优化器
对于图编码器,我们通过以下方法最小化图数据的重构误差:
对于变分图编码器,我们将变分下界优化如下:
4、对抗图自编码器模型
用识别器D(Z)训练编码器模型的公式可以写成:
其中G(X, A)和D(Z)表示上述生成器和鉴别器。
5、算法流程