对抗正则化图自编码器-ARGA-ARVGA

  1. 图卷积Autoencoder。自动编码器采用图A的结构和节点内容X作为输入,学习一个潜在表示Z,然后从Z重建图结构A。
  2. 对抗的正规化。对抗网络通过对抗训练模块迫使潜在码匹配先验分布,该模块区分当前潜在码zi∈Z是来自编码器还是来自先验分布。

1、图编码器

为了在一个统一的框架中表示图结构A和节点内容X,我们开发了一种图卷积网络(GCN)的变体作为图编码器。我们的图卷积网络(GCN)将卷积的运算扩展到谱域的图数据,并通过谱卷积函数𝑓(𝑍𝑙,𝐴|𝑊𝑙)学习分层变换:

 每一层的图卷积可以如下表示:

 编码器:

 变分图编码器由一个推理模型定义:


 2、图解码器

 图自编码器模型:


3、优化器

对于图编码器,我们通过以下方法最小化图数据的重构误差:

 对于变分图编码器,我们将变分下界优化如下:


4、对抗图自编码器模型

用识别器D(Z)训练编码器模型的公式可以写成:

 其中G(X, A)和D(Z)表示上述生成器和鉴别器。


5、算法流程

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值