牛顿多项式插值

因为拉个朗日多项式插值在插值点数目增加后需要重新计算插值基函数,牛顿多插值多项式对这一点进行引入了差商的定义进行了优化。
以下对n次牛顿插值多项式的计法为N_{n}(x)

(1)一个插值点

x_{1}
N_{0}(x) y_{1}

 即需要满足:N_{0}(x_{1})=y_{1},此时的N_{0}(x)是常函数,故N_{0}(x)=y_{1}

(2)两个插值点

x_{1} x_{2}
N_{1}(x) y_{1} y_{2}

需满足的条件:N_{1}(x_{1})=y_{1},N_{1}(x_{2})=y_{2}

由两点式直线方程得:N_{1}(x)=y_{1}+\frac{(y_{1}-y_{2})}{x_{1}-x_{2}}(x-x_{1})

\because N_{0}(x)=y_{1},所以N_{0}(x)可以作为N_{1}(x)的一项,即N_{1}(x)=N_{0}(x)+(x-x_{1})a_{1},此时a_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}},称作一阶差商(一阶差商实际就是一阶导数)

(3)三个插值点

x_{1} x_{2} x_{3}
N_2(x) y_{1} y_{2} y_{3}

需要满足的条件N_{2}(x_{1})=y_{1},N_{2}(x_{2})=y_{2},N_{2}(x_{3})=y_{3}

考虑用N_{1}(x)构造出N_{2}(x)。参考N_{1}(x)的构造。

N_{2}(x)=N_{1}(x)+a_{2}(x-x_{1})(x-x_{2}),自然满足前两个条件,为得出a_{2}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值