数理统计与数据分析第三版习题 第3章 第33-35题

题目33

如3.5.2节的例子3.5.2.5,假定读者认为硬币正面向上的先验观点可以用[0,1]的均匀密度来表示,现在反复地转动硬币,并记录下转动次数 N N N,直到正面向上为止。因此如果在第一次转动时正面就向上则 N = 1 N=1 N=1,等等。
a.计算给定 N 时 Θ N时\Theta NΘ的后验密度
b.用一枚新造的硬币重新试验,作出后验密度的图形

解题思路

参考本题中提到的例子3.5.2.5
Θ \Theta Θ的先验概率为
f Θ ( θ ) = 1 f_\Theta(\theta)=1 fΘ(θ)=1
给定 θ , N \theta,N θ,N服从成功概率为 θ \theta θ的几何分布:
f N ∣ Θ ( n ∣ θ ) = ( 1 − θ ) n θ f_{N|\Theta}(n|\theta)=(1-\theta)^n\theta fNΘ(nθ)=(1θ)nθ
现在 Θ \Theta Θ是连续的, N N N是离散的,它分具有联合概率分布:
f Θ , N ( θ , n ) = f N ∣ Θ ( n ∣ θ ) f Θ ( θ ) = f N ∣ Θ ( n ∣ θ ) = ( 1 − θ ) n θ f_{\Theta,N}(\theta,n)=f_{N|\Theta}(n|\theta)f_\Theta(\theta)=f_{N|\Theta}(n|\theta)=(1-\theta)^n\theta fΘ,N(θ,n)=fNΘ(nθ)fΘ(θ)=fNΘ(nθ)=(1θ)nθ
计算 N N N的边际密度
f N ( n ) = ∫ 0 1 f Θ , N ( θ , n ) d θ = ∫ 0 1 ( 1 − θ ) n θ d θ f_N(n)=\int_0^1f_{\Theta,N}(\theta,n)d\theta=\int_0^1(1-\theta)^n\theta d\theta fN(n)=01fΘ,N(θ,n)dθ=01(1θ)nθdθ
下边是 f N ( n ) f_N(n) fN(n)积分过程:
f N ( n ) = ∫ 0 1 f Θ , N ( θ , n ) d θ = ∫ 0 1 ( 1 − θ ) n θ d θ = ∫ 0 1 ( θ − 1 ) ( 1 − θ ) n − 1 d θ + ∫ 0 1 ( 1 − θ ) n − 1 d θ = − ∫ 0 1 ( 1 − θ ) ( 1 − θ ) n − 1 d θ + ∫ 0 1 ( 1 − θ ) n − 1 d θ = − ∫ 0 1 ( 1 − θ ) n d θ + ∫ 0 1 ( 1 − θ ) n − 1 d θ = − − ∫ 0 1 ( 1 − θ ) n d ( 1 − θ ) + − ∫ 0 1 ( 1 − θ ) n − 1 d ( 1 − θ ) = ∫ 0 1 ( 1 − θ ) n d ( 1 − θ ) − ∫ 0 1 ( 1 − θ ) n − 1 d ( 1 − θ ) = [ ( 1 − θ ) n + 1 n + 1 − ( 1 − θ ) n n ] 0 1 = 1 n ( n + 1 ) \begin{aligned} f_N(n)&=\int_0^1f_{\Theta,N}(\theta,n)d\theta\\ &=\int_0^1(1-\theta)^n\theta d\theta\\ &=\int_0^1(\theta-1)(1-\theta)^{n-1}d\theta+\int_0^1(1-\theta)^{n-1}d\theta\\ &=-\int_0^1(1-\theta)(1-\theta)^{n-1}d\theta+\int_0^1(1-\theta)^{n-1}d\theta\\ &=-\int_0^1(1-\theta)^{n}d\theta+\int_0^1(1-\theta)^{n-1}d\theta\\ &=--\int_0^1(1-\theta)^nd(1-\theta)+-\int_0^1(1-\theta)^{n-1}d(1-\theta)\\ &=\int_0^1(1-\theta)^nd(1-\theta)-\int_0^1(1-\theta)^{n-1}d(1-\theta)\\ &=\left [ \frac{(1-\theta)^{n+1}}{n+1} - \frac{(1-\theta)^n}{n} \right ]_0^1\\ &=\frac{1}{n(n+1)} \end{aligned} fN(n)=01fΘ,N(θ,n)dθ=01(1θ)nθdθ=01(θ1)(1θ)n1dθ+01(1θ)n1dθ=01(1θ)(1θ)n1dθ+01(1θ)n1dθ=01(1θ)ndθ+01(1θ)n1dθ=01(1θ)nd(1θ)+01(1θ)n1d(1θ)=01(1θ)nd(1θ)01(1θ)n1d(1θ)=[n+1(1θ)n+1n(1θ)n]01=n(n+1)1
根据条件概率公式:
f Θ ∣ n ( θ ∣ n ) = f Θ , N ( θ ∣ n ) f N ( n ) = ( 1 − θ ) n θ 1 n ( n + 1 ) = n ( n + 1 ) ( 1 − θ ) n θ \begin{aligned} f_{\Theta|n}(\theta|n)&=\frac{f_{\Theta,N}(\theta|n)}{f_N(n)}\\ &=\frac{(1-\theta)^n\theta}{\frac{1}{n(n+1)}}\\ &=n(n+1)(1-\theta)^n\theta \end{aligned} fΘn(θn)=fN(n)fΘ,N(θn)=n(n+1)1(1θ)nθ=n(n+1)(1θ)nθ
a.小问最后答案:
n ( n + 1 ) ( 1 − θ ) n θ n(n+1)(1-\theta)^n\theta n(n+1)(1θ)nθ

题目34

如3.5.2节的例子3.5.2.5,假定读者认为硬币正面向上的先验观点可以用[0,1]的均匀密度来表示,假定先验密度是参数为 a = b = 3 a=b=3 a=b=3的贝塔密度,这反映出有更强的先验观点认为出现1面的几率是 1 2 \frac12 21,做出先验密度图形,根据例子中的推导过程,计算后验密度,并作出它的图形且与例子中所示的后验密度相比较。

首先做出先验密度图形:

在这里插入图片描述
下面推导后验概率,为了避免与贝塔分布中的参与 a , b a,b a,b区分我们先令题目中的 a , b a,b a,b c , d c,d c,d都等于3

Θ \Theta Θ的先验概率为
f Θ ( θ ) = Γ ( i + j ) Γ ( i ) Γ ( j ) θ i − 1 ( 1 − θ ) j − 1 f_\Theta(\theta)=\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\theta^{i-1}(1-\theta)^{j-1} fΘ(θ)=Γ(i)Γ(j)Γ(i+j)θi1(1θ)j1
给定 θ , N \theta,N θ,N服从成功概率为 θ \theta θ的二项分布:
f X ∣ Θ ( x ∣ θ ) = ( n x ) θ x ( 1 − θ ) n − x f_{X|\Theta}(x|\theta)={n\choose x}\theta^x(1-\theta)^{n-x} fXΘ(xθ)=(xn)θx(1θ)nx
现在 Θ \Theta Θ是连续的, N N N是离散的,它分具有联合概率分布:
f Θ , X ( θ , x ) = f X ∣ Θ ( x ∣ θ ) f Θ ( θ ) = ( n x ) θ x ( 1 − θ ) n − x Γ ( i + j ) Γ ( i ) Γ ( j ) θ i − 1 ( 1 − θ ) j − 1 f_{\Theta,X}(\theta,x)=f_{X|\Theta}(x|\theta)f_\Theta(\theta)={n\choose x}\theta^x(1-\theta)^{n-x}\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\theta^{i-1}(1-\theta)^{j-1} fΘ,X(θ,x)=fXΘ(xθ)fΘ(θ)=(xn)θx(1θ)nxΓ(i)Γ(j)Γ(i+j)θi1(1θ)j1
计算 N N N的边际密度
f X ( x ) = ∫ 0 1 f Θ , X ( θ , x ) d θ f_X(x)=\int_0^1f_{\Theta,X}(\theta,x)d\theta fX(x)=01fΘ,X(θ,x)dθ
下边是 f X ( x ) f_X(x) fX(x)积分过程:
f X ( x ) = ∫ 0 1 f Θ , X ( θ , x ) d θ = ∫ 0 1 ( n x ) θ x ( 1 − θ ) n − x Γ ( i + j ) Γ ( i ) Γ ( j ) θ i − 1 ( 1 − θ ) j − 1 = ( n x ) Γ ( i + j ) Γ ( i ) Γ ( j ) ∫ 0 1 θ x ( 1 − θ ) n − x θ i − 1 ( 1 − θ ) j − 1 d θ = ( n x ) Γ ( i + j ) Γ ( i ) Γ ( j ) ∫ 0 1 θ x + i − 1 ( 1 − θ ) n − x + j − 1 d θ 其 中 : ∫ 0 1 θ x + i − 1 ( 1 − θ ) n − x + j − 1 d θ = Γ ( x + i ) Γ ( n − x + j ) Γ ( x + i + n − x + j ) 则 : f X ( x ) = ( n x ) ⋅ Γ ( i + j ) Γ ( i ) Γ ( j ) ⋅ Γ ( x + i ) Γ ( n − x + j ) Γ ( x + i + n − x + j ) 计 算 : f θ ∣ X ( θ ∣ x ) = f Θ , X ( θ , x ) f X ( x ) = Γ ( x + i + n − x + j ) Γ ( x + i ) Γ ( n − x + j ) ⋅ θ x + i − 1 ( 1 − θ ) n − x + j − 1 \begin{aligned} f_X(x)&=\int_0^1f_{\Theta,X}(\theta,x)d\theta\\ &=\int_0^1{n\choose x}\theta^x(1-\theta)^{n-x}\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\theta^{i-1}(1-\theta)^{j-1}\\ &={n\choose x}\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\int_0^1\theta^x(1-\theta)^{n-x}\theta^{i-1}(1-\theta)^{j-1}d\theta\\ &={n\choose x}\frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\int_0^1\theta^{x+i-1}(1-\theta)^{n-x+j-1}d\theta\\ 其中:\\ &\int_0^1\theta^{x+i-1}(1-\theta)^{n-x+j-1}d\theta=\frac{\Gamma(x+i)\Gamma(n-x+j)}{\Gamma(x+i+n-x+j)}\\ 则:\\ f_X(x)&={n\choose x}\cdot \frac{\Gamma(i+j)}{\Gamma(i)\Gamma(j)}\cdot\frac{\Gamma(x+i)\Gamma(n-x+j)}{\Gamma(x+i+n-x+j)}\\ 计算:\\ f_{\theta|X}(\theta|x)&=\frac{f_{\Theta,X}(\theta,x)}{f_X(x)}\\ &=\frac{\Gamma(x+i+n-x+j)}{\Gamma(x+i)\Gamma(n-x+j)}\cdot\theta^{x+i-1}(1-\theta)^{n-x+j-1} \end{aligned} fX(x)fX(x):fθX(θx)=01fΘ,X(θ,x)dθ=01(xn)θx(1θ)nxΓ(i)Γ(j)Γ(i+j)θi1(1θ)j1=(xn)Γ(i)Γ(j)Γ(i+j)01θx(1θ)nxθi1(1θ)j1dθ=(xn)Γ(i)Γ(j)Γ(i+j)01θx+i1(1θ)nx+j1dθ01θx+i1(1θ)nx+j1dθ=Γ(x+i+nx+j)Γ(x+i)Γ(nx+j)=(xn)Γ(i)Γ(j)Γ(i+j)Γ(x+i+nx+j)Γ(x+i)Γ(nx+j)=fX(x)fΘ,X(θ,x)=Γ(x+i)Γ(nx+j)Γ(x+i+nx+j)θx+i1(1θ)nx+j1
则本题的事后验密度满足a=x+i,b=n-x+j贝塔分布
根据题意$i=j=3,n=20,x=13 $做出后验分布图形
在这里插入图片描述

题目35

找一枚新造硬币,站立在边缘上转动20次,依照3.5.2节的例3.5.2.5。计算并绘出后验分布,再转动20次,并计算出40次转动结果的后验分布,当转动次数增加值有什么情况发生了。

解题思路

按要求转动硬币
n=20 正面为8次,n=40时,正面为19次
计算绘图

在这里插入图片描述
红色为n=20 蓝色为n=40,次数越多,越集中

以下解题过程都是由互联网收集而来,并不保证正确,如有疑问可以留言讨论

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值