对螺旋矩阵算法的个人特色理解分析

{ int a[100][100]; int n; cin >> n; int b = 1; int k; int i, j; for (k = 0; k < n / 2; k++) { for (i = k; i <= n - 1 - k; i++) a[k][i] = b++; for (j = k + 1; j < n - 1 - k; j++) a[j][n - 1 - k] = b++; for (i = n - 1 - k; i > k; i–) a[n - 1 - k][i] = b++; for (j = n - 1 - k; j > k; j–) a[j][k] = b++; } if (n % 2 == 1)a[(n - 1) / 2][(n - 1) / 2] = n * n; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) printf("%4d", a[i][j]); cout << endl; }}分上右下左四块区域进行实现赋值,上两张图图一表示如何较彻底地理解一个全新的算法图二表示螺旋算法效果
作者:LOVEの心就是我
https://www.bilibili.com/read/cv1853272
出处: bilibili

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值