线性代数总结与归纳——线性变换、特征值与二次型

线性代数是工科数学的核心与基础内容之一,掌握好线性代数,不仅有助于日后的各种数学学科的理论学习,更是掌握各种专业知识的必备技能。但可惜的是,很多人由于受到教材排版的缺陷、授课水平的约束,并没有很好地理解线性代数的核心,而仅草草通过了考试(包括笔者在内亦是如此)。

学习数学,亦是欣赏人类的智慧结晶,不能透彻学习,乃是大学学习生涯的一大憾事。

所以希望能够通过本系列文章的汇总,来尝试构建属于自己的知识体系,并且能够给予自己和读者一些启发。并且,本篇文章也是用来学习LaTeX与Markdown的测试文章。

由于本人水平有限,难免会有疏漏,请读者酌情阅读。

阅读须知:

  • 标有 D e f i n a t i o n Defination Defination的栏目为定义,定义描述了线性代数的核心研究对象
  • 标有 Law X 的栏目代表定理,定理的证明内容较为复杂,不会在本文涉及。定理是描述线性代数学科的核心,通过对定理的反复学习背诵,可以从根本上掌握线性代数。而一切命题与推论都可以从这若干条定理得出。
  • 本文不适合线性代数初学者
  • 参考资料:天津大学数学学院代数教研组 线性代数讲义

1. 线性变换

线性变换,线性空间等概念是线性代数的核心

D e f i n a t i o n : Defination: Defination: 线性空间 V V V上满足从自身到自身的映射 σ ( α ) \sigma(\pmb{\alpha}) σ(ααα),并且满足 σ ( α + β ) \sigma(\pmb{\alpha + \beta}) σ(α+βα+βα+β) = σ ( α ) \sigma(\pmb{\alpha}) σ(ααα) + σ ( β ) \sigma(\pmb{\beta}) σ(βββ)以及 σ ( k α ) = k σ ( α ) \sigma(k\pmb{\alpha}) = k\sigma(\pmb{\alpha}) σ(kααα)=kσ(ααα),则称 σ \sigma σ V V V上的线性变换

  • 线性变换满足性质: σ ( 0 ) = 0 , σ ( − α ) = − α \sigma(\pmb{0}) = \pmb{0}, \sigma(-\pmb{\alpha}) = -\pmb{\alpha} σ(000)=000,σ(ααα)=ααα
  • 部分特殊线性变换:如投影变换零变换恒等变换数乘变换旋转变换-

2. Law 1

V V V上的某一个基 α 1 , α 2 , . . . , α n \alpha_{1},\alpha_{2}, ...,\alpha_{n} α1,α2,...,αn在某线性变换 σ \sigma σ作用下得到的另一个基 β 1 , β 2 , . . . , β n \beta_{1},\beta_{2}, ...,\beta_{n} β1,β2,...,βn,若 σ \sigma σ确定,则新生成的基也确定;若基 β 1 , β 2 , . . . , β n \beta_{1},\beta_{2}, ...,\beta_{n} β1,β2,...,βn确定,则 σ \sigma σ确定,即,线性变换与生成的基互相唯一确定

  • 思考:为什么要对基做线性变换?因为任何一个元素可以被基唯一表达,而且由于线性变换的线性特性,若一个元素被线性变换,那么这个元素在新基下的参数是不变的。所以我们可以通过研究线性变换对基的变换,来窥探其对所有元素的变换效果。

3. 线性变换的矩阵

由于固定的线性变换对一个基的作用效果是恒定的,考察由基 α 1 − n \alpha_{1-n} α1n β 1 − n \beta_{1-n} β1n的变换,我们可以通过矩阵语言来表示这种基的变换

D e f i n a t i o n : Defination: Defination:考虑基 α 1 , α 2 , . . . , α n \alpha_{1}, \alpha_{2}, ..., \alpha_{n} α1,α2,...,αn在线性变换 σ \sigma σ的作用下的新基 β 1 , β 2 , . . . , β n \beta_{1}, \beta_{2}, ..., \beta_{n} β1,β2,...,βn,必然存在一个矩阵,使得
[ β 1 , β 2 , . . . , β n ] = [ α 1 , α 2 , . . . , α n ] [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] [ \beta_{1}, \beta_{2}, ..., \beta_{n} ] = [ \alpha_{1}, \alpha_{2}, ..., \alpha_{n} ] \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} [β1,β2,...,βn]=[α1,α2,...,αn]a11a21an1a12a22an2a1na2nann
线性变换的矩阵定义为
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} A=a11a21an1a12a22an2a1na2nann

  • 由 Law 1 已知,对于固定的基 α 1 , α 2 , . . . , α n \alpha_{1}, \alpha_{2}, ..., \alpha_{n} α1,α2,...,αn A A A与线性变换 σ \sigma σ互相唯一确定

4. Law 2

由于我们已经用线性变换的矩阵来描述给定基下的线性变换,如果该矩阵已知,又因为任何一个元素可以由该基唯一确定,所以给定任意一个元素,我们都可以通过该矩阵计算出其线性变换后的结果

已知基 α 1 − n \alpha_{1-n} α1n,线性变换 σ \sigma σ在该基下的矩阵为 A A A,对于元素 x x x,若x的坐标为 X X X,而且线性变换后的坐标为 Y Y Y,那么必有 Y = A X Y=AX Y=AX


5. Law 3

该定理主要考察不同基下相同线性变换的矩阵之间的关系

设线性变换 σ \sigma σ在基 α 1 , α 2 , . . . , α n \alpha_{1}, \alpha_{2}, ..., \alpha_{n} α1,α2,...,αn下的矩阵为 A A A,在基 β 1 , β 2 , . . . , β n \beta_{1}, \beta_{2}, ..., \beta_{n} β1,β2,...,βn下的矩阵为 B B B,若从基 α 1 − n \alpha_{1-n} α1n β 1 − n \beta_{1-n} β1n的过渡矩阵 S S S满足
[ β 1 , β 2 , . . . , β n ] = [ α 1 , α 2 , . . . , α n ] S [ \beta_{1}, \beta_{2}, ..., \beta_{n} ] = [ \alpha_{1}, \alpha_{2}, ..., \alpha_{n} ] S [β1,β2,...,βn]=[α1,α2,...,αn]S A A A B B B之间必有 B = S − 1 A S B = S^{-1}AS B=S1AS

  • 过渡矩阵 S S S必然可逆,想一想,为什么?
  • 对于矩阵 A A A B B B的这种关系,我们定义为矩阵的相似,如下

6. 相似矩阵

D e f i n a t i o n : Defination: Defination:对于矩阵 A A A B B B,若存在可逆矩阵 S S S,使得 B = S − 1 A S B = S^{-1}AS B=S1AS则称 A A A B B B相似矩阵,记作 A ∼ B A \sim B AB

  • 相似具有等价关系,即满足反身性、对称性、传递性
  • 相似矩阵具有几个性质:相似矩阵的矩阵多项式仍然相似,并且相似矩阵相同的秩、迹、行列式、特征值与特征向量、可逆性相同。这些特性本质上是相同线性变换所体现出的固有性质
  • 相似矩阵必然相抵,但其逆命题不成立

7. 特征值与特征向量

提出特征向量与特征值的原因,源于研究线性变换中某些特殊的性质。当我们对一个元素进行线性变换时,若这个元素(向量)的方向不变,而只进行了伸缩时,我们就说这个元素时特征向量,而伸缩的大小便是特征值。

D e f i n a t i o n : Defination: Defination: 设线性变换 σ ( x ) \sigma(\pmb{x}) σ(xxx)在某基下的矩阵为 A A A,若元素 x x x 在该线性变换中满足 σ ( x ) = A x = λ x \sigma(x) = Ax= \lambda x σ(x)=Ax=λx,则称该元素 x x x为矩阵 A A A(或线性变换 σ \sigma σ)的特征向量 λ \lambda λ特征值

  • 对于 A x = λ x Ax = \lambda x Ax=λx,移项得 ( λ E − A ) X = 0 (\lambda E - A)X = 0 (λEA)X=0,若 λ \lambda λ存在,则该齐次方程必有非零解,而且 λ \lambda λ必然满足特征多项式 ∣ λ E − A ∣ = 0 |\lambda E - A| = 0 λEA=0,因此 ∣ λ E − A ∣ = 0 |\lambda E - A| = 0 λEA=0的解集即为 A A A 的所有特征值的集合
  • 对于已知特征值 λ \lambda λ,带入原方程 ( λ E − A ) X = 0 (\lambda E - A)X = 0 (λEA)X=0便可得到关于 X X X的解空间 W λ = { X ∣ A X = λ X , X ∈ P n } W_{\lambda} = \{ X | AX = \lambda X, X \in P^n\} Wλ={XAX=λX,XPn},并称之为 λ \lambda λ特征子空间。(易证其必为子空间)

8. 代数重数与几何重数

这两个定义是为了给接下来的两个定理做铺垫

D e f i n a t i o n : Defination: Defination: 特征值的代数重数是指 ∣ λ E − A ∣ = 0 |\lambda E - A| = 0 λEA=0的解 λ \lambda λ的数量,即有“几重”根
D e f i n a t i o n : Defination: Defination: 特征值的几何重数是指该特征值解空间的维度 d i m W λ dimW_{\lambda} dimWλ


9. Law 4

N N N阶方阵的特征值 λ 0 \lambda_0 λ0的几何重数 r ≤ r \leq r 代数重数 k k k

  • 推论:单根 λ \lambda λ的特征子空间必为 n n n维空间中的一条过原点的直线
  • 对于 k k k重根 λ \lambda λ,其特征子空间维数必然小于等于 k k k

10. Law 5

不同特征值下的特征向量必然线性无关


未完待续,剩余内容:对角化、实对称矩阵对角化、二次型、线性替换、二次型的等价与矩阵的合同、二次型的标准型,预计还剩8个命题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值