线性代数复习——矩阵的秩、相抵、向量组的秩

本篇文章主要对矩阵的秩、相抵、向量组等线性代数概念以及相关定理进行总结与归纳


第一部分 研究向量组



1.线性组合、线性相关

D e f 1 Def 1 Def1: k 1 α 1 + k 2 α 2 + . . . + k n α n k_1\alpha_1 + k_2\alpha_2 + ... + k_n\alpha_n k1α1+k2α2+...+knαn称之为向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn的一个线性组合,而该向量则称为向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn线性表示

D e f 2 Def 2 Def2: 设向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn,如果有不全为零的数 k 1 , k 2 , . . . , k n k_1, k_2, ..., k_n k1,k2,...,kn,使得 k 1 α 1 + k 2 α 2 + . . . + k n α n = 0 k_1\pmb{\alpha_1} + k_2\pmb{\alpha_2} + ... + k_n\pmb{\alpha_n} = \pmb{0} k1α1α1α1+k2α2α2α2+...+knαnαnαn=000那么就称该向量组线性相关,否则线性无关

  • 关于部分组的性质:
    1. 若部分组线性相关,则整个向量组必线性相关
    2. 若整个向量组线性无关,则任意部分组线性无关
    3. 若包含零向量,则必然线性相关

2. 定理:线性组合与线性表示的关系

向量组 α 1 , α 2 , . . . , α n ( s > 1 ) \alpha_1,\alpha_2,...,\alpha_n(s>1) α1,α2,...,αn(s>1)线性相关的充要条件是其中至少一个向量能够被其余向量表示

  • 理解:线性相关的向量组能够自我线性表示,而线性无关的向量组不能自我表示
  • 因此,对于线性无关的向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn,若 α 1 , α 2 , . . . , α n , β \alpha_1,\alpha_2,...,\alpha_n,\beta α1,α2,...,αn,β线性相关,则 β \beta β必然能够被唯一地线性表示。
  • 相反地,对于线性无关的向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn,若 β \beta β不能被线性表示,则 α 1 , α 2 , . . . , α n , β \alpha_1,\alpha_2,...,\alpha_n,\beta α1,α2,...,αn,β线性无关

3. 向量组的等价

向量组的等价描述了能够互相表示的能力,其实更是蕴含了相同的秩

D e f Def Def : 向量组的等价即两个向量组能够互相线性表示

  • 向量组的等价满足反身性、对称性、传递性,是一种等价关系
  • 引理:若线性无关的向量组 α 1 , α 2 , . . . , α s \alpha_1,\alpha_2,...,\alpha_s α1,α2,...,αs β 1 , β 2 , . . . , β r \beta_1,\beta_2,...,\beta_r β1,β2,...,βr线性表示,则必有 s ≤ r s \leq r sr (直观上容易理解,证明不难)
  • 推论1:显然,由该引理,等价的线性无关的向量组必然数量相同

4. 向量的极大无关组、向量的秩

D e f Def Def: 若向量组的的一个部分组,其部分组线性无关,并且其余的向量能够被部分组线性表示(唯一),则称该部分组为向量组的 极大无关组

D e f Def Def: 向量组的极大无关组所含的向量数即为向量的

  • 向量组的极大无关组不唯一
  • 向量组的任意极大无关组,都与自身等价
  • 易知,线性无关的向量组,其极大无关组为自身,并且秩即为自身的向量数
  • 等价的向量组必然有相同的秩,这是等价的关键属性




第二部分 矩阵的秩

原书中关于“矩阵的秩”的定义是基于k阶子式的,但是我认为这种定义不够直观,过于复杂,所以这里给出了另一种关于矩阵的秩的定义

5. 矩阵的秩、矩阵的相抵

D e f Def Def : 矩阵的即其 行阶梯状矩阵 的非零行的行数,记作 r ( A ) r(A) r(A)

D e f Def Def : 对于矩阵 A A A, B B B之间,如果能够通过有限次初等变换互相转化,那么就称 A A A B B B相抵,这里我们记作 A ∼ B A \sim B AB

  • 相抵满足反身性、对称性、传递性,是一种等价关系
  • 由秩的定义可得推论1:对于任意一个矩阵 A m × n A_{m \times n} Am×n r ( A ) = r r(A) = r r(A)=r,必有
    A ∼ [ E r O O O ] m × n o r P A Q = [ E r O O O ] m × n A \sim \begin{bmatrix} E_r & O \\ O & O \end{bmatrix} _{m \times n} \quad or \quad PAQ= \begin{bmatrix} E_r & O \\ O & O \end{bmatrix} _{m \times n} A[ErOOO]m×norPAQ=[ErOOO]m×n证明显然,因为我们可以先通过初等行变换转化为行简化阶梯型矩阵,之后再使用初等列变换化成该相抵标准型,反之亦然。
  • 由相抵的定义可得推论2:对于任意两个相抵矩阵,必存在可逆矩阵 P m × m , Q n × n P_{m \times m},Q_{n \times n} Pm×m,Qn×n,使得 P A Q = B PAQ = B PAQ=B
  • 由以上推论立刻可知推论3:矩阵的相抵 等价于 具有相同的秩,即初等变换不改变矩阵的秩,即 r ( P A Q ) = r ( P A ) = r ( A Q ) = r ( A ) r(PAQ)=r(PA)=r(AQ)=r(A) r(PAQ)=r(PA)=r(AQ)=r(A)其中 P , Q P, Q P,Q为可逆矩阵,可以看作初等变换的累积

6. 矩阵的另一种定义

D e f Def Def:矩阵的非零子式的最高阶数称为矩阵 A A A

  • 由此可得性质: r ( A ) ≤ m i n ( m , n ) r(A) \leq {\rm min}(m, n) r(A)min(m,n) r ( A T ) = r ( A ) r(A^T) = r(A) r(AT)=r(A) r ( k A ) = r ( A ) r(kA) = r(A) r(kA)=r(A)
  • 方阵的n阶子式为 ∣ A ∣ |A| A,故方阵满秩等价于方阵可逆(可逆与秩的联系

7. 关于矩阵秩的一些命题

  1. r [ A O O B ] = r ( A ) + r ( B ) r\begin{bmatrix} A & O \\ O & B \end{bmatrix} = r(A) + r(B) r[AOOB]=r(A)+r(B)
  2. r ( A + B ) ≤ r ( A ) + r ( B ) = [ A O O B ] r(A + B) \leq r(A) + r(B) = \begin{bmatrix} A & O \\ O & B \end{bmatrix} r(A+B)r(A)+r(B)=[AOOB]
  3. r ( A B ) ≤ m i n ( r ( A ) , r ( B ) ) r(AB) \leq {\rm min}(r(A), r(B)) r(AB)min(r(A),r(B))
  4. r ( A B ) ≥ r ( A ) + r ( B ) − n r(AB) \geq r(A) + r(B) - n r(AB)r(A)+r(B)n

8. 定理:向量组的秩与矩阵秩的关系

A 的 行 秩 = A 的 列 秩 = r ( A ) A的行秩 = A的列秩 = r(A) A=A=r(A)


一些自己的思考:

关于线性相关性:如果向量组 α 1 , α 2 , . . . , α n \alpha_1,\alpha_2,...,\alpha_n α1,α2,...,αn与向量组 β 1 , β 2 , . . . , β n \beta_1,\beta_2,...,\beta_n β1,β2,...,βn具有相同线性相关性,则可以认为n元齐次方程 x 1 α 1 + x 2 α 2 + . . . + x n α n x_1\alpha_1 + x_2\alpha_2 + ... + x_n\alpha_n x1α1+x2α2+...+xnαn x 1 β 1 + x 2 β 2 + . . . + x n β n x_1\beta_1 + x_2\beta_2 + ... + x_n\beta_n x1β1+x2β2+...+xnβn 同解,即 [ α 1 , α 2 , . . . , α n ] X = 0 [\alpha_1, \alpha_2, ..., \alpha_n]X = 0 [α1,α2,...,αn]X=0 [ β 1 , β 2 , . . . , β n ] X = 0 [\beta_1, \beta_2, ..., \beta_n]X = 0 [β1,β2,...,βn]X=0 同解

下面我们证明一个事实,即初等行变换后的列向量组具有相同的线性相关性。事实上,此命题是“初等行变换后具有相同(列)秩”的充分条件。这个命题的证明,课本给的非常含糊,所以再次给出证明。

证明 设矩阵 A = [ α 1 , α 2 , . . . , α n ] A = [\alpha_1, \alpha_2, ..., \alpha_n] A=[α1,α2,...,αn] B = [ β 1 , β 2 , . . . , β n ] B = [\beta_1, \beta_2, ..., \beta_n] B=[β1,β2,...,βn],由于 A A A B B B相抵,所以存在可逆矩阵 P P P,使得
P A = B PA = B PA=B考虑N阶齐次方程组 A X = 0 AX = 0 AX=0 B X = 0 BX = 0 BX=0,由于 P A = B PA = B PA=B,所以
P A X = 0 PAX = 0 PAX=0因此,对于 A X = 0 AX = 0 AX=0中的任意一个解 X 0 X_0 X0,其必然满足 P A X 0 = 0 PAX_0 = 0 PAX0=0,也就满足 B X 0 = 0 BX_0 = 0 BX0=0。反之由于 P P P可逆,故同理可证。因此 A X = 0 AX = 0 AX=0 B X = 0 BX = 0 BX=0同解,原命题得证

Q . E . D Q.E.D Q.E.D

因此,对于通过初等行变换而相抵的矩阵,其列矩阵的线性相关性必然相同。如令 A 3 × 4 A_{3 \times 4} A3×4的行阶梯状矩阵为 R 3 × 4 R_{3 \times 4} R3×4,且 r ( A ) = 2 r(A) = 2 r(A)=2则必有
R = [ 1 0 x 1 x 2 0 1 x 3 x 4 0 0 0 0 ] R = \begin{bmatrix} 1 & 0 & x_1 & x_2 \\ 0 & 1 & x_3 & x_4 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} R=100010x1x30x2x40
若设 R R R对应的列向量为 α ′ \alpha' α,易知 α 3 ′ = x 1 α 1 ′ + x 3 α 2 ′ , α 4 ′ = x 2 α 1 ′ + x 4 α 2 ′ \alpha'_3 = x_1\alpha'_1 + x_3\alpha'_2,\alpha'_4 = x_2\alpha'_1 + x_4\alpha'_2 α3=x1α1+x3α2α4=x2α1+x4α2由于 R R R A A A对应的方程组同解,设 A A A对应的列向量为 α \alpha α,则必有
α 3 = x 1 α 1 + x 3 α 2 , α 4 = x 2 α 1 + x 4 α 2 \alpha_3 = x_1\alpha_1 + x_3\alpha_2,\alpha_4 = x_2\alpha_1 + x_4\alpha_2 α3=x1α1+x3α2α4=x2α1+x4α2

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值