概览
- Gzip
- Deflate 编码(LZ77+哈夫曼)
- Brotli
- LZ77+哈夫曼+二阶上下文建模
Deflate 分两个阶段压缩数据:重复消除和位减少
第一阶段:重复消除 — LZ77无损压缩算法
算法介绍
基于字典的无损压缩算法,它搜索重复的未压缩序列并用引用指针替换它们。
引用指针由 2 个元素定义:
- offset距离(或偏移量):原始未压缩数据中出现的第一个现有字节的相对返回。
- Length:重复的字节长度。
当对序列进行压缩的时候,采用 “滑动窗口” 算法,
结构如下:
- 查找缓冲区(Search buffer),也称字典(已编码部分)
- 先行缓冲区(Look ahead buffer),包括即将进行编码序列的一部分。每次读取数据的时候,先把一部分数据预载入前向缓冲区。为移入滑动窗口做准备。
由于缓冲区具有固定的长度,所以,当算法(编码器)在运行时候,它看起来像在文件中“滑动”,所以这个缓冲区被称为“滑动窗口”。
滑动窗的尺寸是影响压缩性能的关键因素之一。如果滑动窗口太小,则压缩器可能会发现较少的重复数据序列,结果,压缩文件的大小将更大。如果滑动窗口太大,则压缩器可能需要花费更长的时间来查找重复的数据序列,因此压缩速度将变慢。
要使用 LZ77 压缩算法:
- 将编码位置设置为输入流的开头。
- 在查找缓冲区的窗口中找到最长的匹配项。
- 如果找到匹配,则输出指针 P。将编码位置(和窗口)向前移动 L个字节。
- 如果未找到匹配项,则输出空指针和先行缓冲区中的第一个字节。将编码位置(和窗口)向前移动一个字节。
- 如果先行缓冲区不为空,则返回步骤 2。
主要逻辑 :
通过先行缓冲区预读取数据,然后向字典中移入, 不断搜索字典中与先行缓冲区连续相匹配的最长序列,然后输出metadata标记。
举例
以微软的例子来理解算法:微软介绍:LZ77压缩算法
Input stream
Position 1 2 3 4 5 6 7 8 9
Byte A A B C B B A B C
Output 期望压缩后得到的结果:
压缩后怎么能读取到原文呢?
答:需要将output进行解码,如:
(0,0)‘X’:直接推入X
(o,l):找到offset=o的位置,往后复制l个字符
看来最重要的一环就是如何压缩啦!让我们一起看看这个算法的思路和图解吧~
压缩算法思路
AABCBBABC串,将重复的子串用指针进行替换,
对于其中的每个元素 x 有两种情况:
1. 前文没有任何重复的子串:输出(0,0)x
2. 在前文能找到重复的子串:输出(offset = x和匹配子串的的距离,length = 匹配子串的长度)
图解压缩过程
字符序列移动方向:从右往左
简称:
- buffer区:先行缓存区(未编码),这是需要匹配的字符串
- Dictionary:查找缓存区(已编码),用来匹配buffer的字典区域
-
初始字符串从右往左滑动,直至占满所有buffer区,如图1
(图1)
-
开始遍历 图1 buffer的第一个字符’A’,因Dictionary空,未匹配到’A’ => 往左移一格(如图2),输出(0,0)A。
(offset = A无匹配子串,距离=0,length:0,无重复子串) (图2)
-
遍历 图3 buffer第一个字符"A",在Dictionary找到"A",未超过buffer黄色长度,往后遍历到编码"AB",Dictionary没有匹配到“AB”字符串,于是只编码"A",输出(1, 1)。
(图3)
如 图4,匹配长度为1,所以字符串向左偏移一个单位:
(图4)
-
匹配buffer区第一个字符’B’,Dictionary内未匹配,同步骤1,输出(0,0)B,左移一格。
-
匹配buffer区第一个字符’C’,Dictionary内未匹配,同上,输出(0,0)C,左移一格,如 图5 :
(图5)
-
匹配 图6 buffer区第一个字符’B’,offset('B’与Dictionary中匹配的’B’的距离)=2,两个查找指针同时往后移1(如图6),比较
'C'vs'B'
不匹配,终止,length=1,输出(2,1)
(图6)
得到结果:
(图7)
-
匹配 图7 buffer区第一个字符’B’,Dictionary匹配到‘B’,分别是offset=1和offset=3,但offset=3下一字节
'C'vs'A'
不匹配,就近原则选择offset=1,length=1,输出(1,1)。
(图8)
此时已编码序列长度大于Dictionary区,有序列滑出了窗口,如图8。
-
匹配 图8 BUFFER第一个字符 ‘A’,在DICTIONARY匹配到,offset=5,往后遍历直到匹配"ABC",length=3,此时不能再往后编码否则超过BUFFER区域长度,故输出(5, 3),往左移动3格,如图:
第二阶段:位减少
huffman
通过哈夫曼树,我们可以将原本需要120bit(15*8)的位减少到 28bit
位减少
范式huffman树:在普通huffman树的基础上只要保存编码位长,利用位长反推编码