情感分析系列之《利用BRAT进行中文情感分析语料标注》

本文介绍了如何利用BRAT工具进行面向ABSA的中文情感分析语料标注,包括BRAT的安装、配置、数据导入和标注方法,以支持NLP的情感分析任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景

情感分析是NLP中的一大分支,无论在学术界还是工业界都有广泛的研究,在SemEval语义分析会议中有单独的情感分析任务分支,其中最难的一个任务叫做ABSA:Aspect-Based Sentiment Analysis,面向方面的情感分析。举例来说,就是对以下句子,

新版本英雄的皮肤很不错,但是游戏经常出现掉线

要能识别出这样的情感标注结果:<英雄,视觉性,正面>,<游戏,稳定性,负面>

而其中,[英雄,游戏]为实体(entity),[视觉性,稳定性]为方面(aspect),ABSA的任务就是识别句子中关于某些实体的某些方面的正负面情感。

从Semeval 2015的结果来看,目前没有任何技术能够做到无监督解决这一任务,既然需要监督学习就少不了标注。如果借助现有的工具来提高标注效率在工程上具有重要意义。

本文主要介绍如何利用BRAT进行针对ABSA问题的语料标注,后续如何利用这些标注构建模型来解决ABSA问题将在随后的文章中介绍。本系列的所有的工作都来自WeTest舆情团队的努力成果(http://wetest.qq.com/bee/)。

2.BRAT简介

BRAT是一个基于web的文本标注工具,主要用于对文本的结构化标注,用BRAT生成的标注结果能够把无结构化的原始文本结构化,供计算机处理。利用该工具可以方便的获得各项NLP任务需要的标注语料。以下是利用该工具进行命名实体识别任务的标注例子:

第一步:安装BRAT

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值