求矩阵的1,和2范数

1.向量的范数:

0范数,向量中非零元素的个数。
1范数,为绝对值之和。
2范数,就是通常意义上的模。 

无穷范数,就是取向量的最大值。



但是向量的范数和矩阵的范数关系不大,百度了好久也没看到狠心的东西,下面我来总结一下:


矩阵的范数:(是矩阵之间距离度量的方法)

矩阵的1范数(norm(A,1)):在矩阵的各个列中,指绝对值之和最大的那个列(的绝对值之和),举例子一目了然:

 A=[0 1 0;1 0 0;-1 0 0]

A =

     0     1     0
     1     0     0
    -1     0     0


>> norm(A,1)

ans =

     2
矩阵的2范数(norm(A,2)):指矩阵A与矩阵A的转置相乘后得到B,再对矩阵B的最大特征值开方,还是例子:

A=[0 1 0;1 0 0;-1 0 0];
>> B=A*A';
>> [V,D]=eig(B)%V是特征向量,D是特征值
V =
         0    1.0000         0
   -0.7071         0   -0.7071
   -0.7071         0    0.7071
D =

     0     0     0
     0     1     0
     0     0     2

>> sqrt(2)

ans =
    1.4142
>> norm(A,2)
ans =
    1.4142
既然矩阵的2范数是距离度量的一种,那么矩阵的2范数越小,则两矩阵的相似性越大。由于知识有限,解释的不好见谅(没有看出2范数和欧氏距离的关系)。(比网上那些讲得迷迷糊糊好点吧)


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值