sobel算子原理与实现

本文介绍了Sobel算子的原理,用于边缘检测,通过计算图像中像素点的灰度差分来确定边缘。Sobel算子对噪声有一定的平滑作用,适用于精度要求不高的边缘检测。文章还提供了C++实现Sobel算子的代码示例,并提及了OpenCV库中Sobel函数的使用方法,包括参数解释。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、原理:

首先介绍背景知识:

   1)边缘:灰度或结构等信息的突变处,边缘是一个区域的结束,也是另一个区域的开始,利用该特征可以分割图像。

   2)边缘点:图像中具有坐标[x,y],且处在强度显著变化的位置上的点。

   3)边缘段:对应于边缘点坐标[x,y]及其方位 ,边缘的方位可能是梯度角。

       索贝尔算子Sobeloperator)主要用作边缘检测,在技术上,它是一离散性差分算子,用来运算图像亮度函数的灰度之近似值。在图像的任何一点使用此算子,将会产生对应的灰度矢量或是其法矢量。

为了节省时间,我就直接截图了,原理都这样。




套用公式就如下,


评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值