前言
网友写的关于朴素贝叶斯的例子真的是脑洞大开,关于根据女孩的身材、高矮、胖瘦等特征来判断她是否漂亮的、根据男孩帅不帅,高不高,上不上进等来判断应不应该嫁的,千奇百怪,学的时候真的是乐趣无穷,个人觉得,学习就得这样。
好了,言归正传,从贝叶斯公式讲起。
引用链接:https://blog.csdn.net/fisherming/article/details/79509025
https://blog.csdn.net/u012040909/article/details/82151286
https://blog.csdn.net/qq1010885678/article/details/45092519
贝叶斯公式
这是最基础的贝叶斯公式,转化为机器学习中的形式就是:
大致解释一下:
设一个女孩x1,其具有的特征有(瘦,脸蛋好看,高),类别是(漂亮)
举例
有数据如下:
现在给定一个新的样本(男孩),其特征为:(帅,性格不好,高,不上进),判断女孩会不会嫁。
这里就用到了贝叶斯公式,问题转化为了求:
这里举得例子不是很好,最后得到了100%的嫁的概率,原因在于样本数目太少,其中p(高|不嫁)居然等于0,也就是说不嫁的里面没一个高的(高的果然抢手啊)。
朴素贝叶斯分类的一般过程
多种类别的贝叶斯分类
1、GaussianNB,高斯贝叶斯分类器。它假设特征的条件概率分布满足高斯分布:
2、MultinomialNB,多项式贝叶斯分类器。它假设特征的条件概率分布满足多项式分布:
3、BernoulliNB,伯努利贝叶斯分布。它假设特征的条件概率满足二项式分布:
Python 应用
这里挑选了kaggle中特别基础也特备热门的入门级竞赛:“泰坦尼克游客生存预测”
具体的比赛内容大家参考这里,数据也可以在这下载,代码如下:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB, BernoulliNB, MultinomialNB
# 导入数据集
data = pd.read_csv("train.csv")
# 将分类变量转换为数字
data["Sex_cleaned"]=np.where(data["Sex"]=="male",0,1)
data["Embarked_cleaned"]=np.where(data["Embarked"]=="S",0,
np.where(data["Embarked"]=="C",1,
np.where(data["Embarked"]=="Q",2,3)
)
)
# 清除数据集中的非数字值(NaN)
data=data[[
"Survived",
"Pclass",
"Sex_cleaned",
"Age",
"SibSp",
"Parch",
"Fare",
"Embarked_cleaned"
]].dropna(axis=0, how='any')
# 将数据集拆分成训练集和测试集
X_train, X_test = train_test_split(data, test_size=0.2, random_state=int(time.time()))
# 实例化分类器
gnb = GaussianNB()
used_features =[
"Pclass",
"Sex_cleaned",
"Age",
"SibSp",
"Parch",
"Fare",
"Embarked_cleaned"
]
# 训练分类器
gnb.fit(
X_train[used_features].values,
X_train["Survived"]
)
y_pred = gnb.predict(X_test[used_features])
# 打印结果
print("Number of mislabeled points out of a total {} points : {}, performance {:05.2f}%"
.format(
X_test.shape[0],
(X_test["Survived"] != y_pred).sum(),
100*(1-(X_test["Survived"] != y_pred).sum()/X_test.shape[0])
))
结果为:
达到了78.32%的准确率。