释放大规模管理分类数据的复杂性

国防部及其供应链面临的最大挑战之一是在不影响安全性的情况下从敏感知识产权和机密数据的集体存储中提取价值。分布在不同应用程序、多云和混合环境以及格式中的大量(通常是强制孤立的)数据湖的激增加剧了这一挑战。 

当大海捞针被分成许多部分并分布在多个大海捞针时,如何找到大海捞针?通常,答案是你不能。

为了使结构化数据真正有用,必须对其进行整理和丰富,以促进操作和分析工作负载(最好以机器的速度)。然而,大多数组织都在努力合并来自不同来源的数据并以安全、分段和合规的方式呈现这些数据。 

对于国防部及其支持行业来说,风险甚至更高。及时的信息共享以及随着情况的发展而改变访问级别的灵活性对于保持有效和及时的国防能力交付至关重要。这是国防战略审查(DSR)寻求的关键成果之一。更严峻的挑战是,国防供应商必须证明自己遵守多项政府安全法规,否则将面临巨额罚款,甚至可能失去国防合同。在 AUKUS 的领导下,这现在已经超越了主权治理,延伸到了多主权治理。

为了解决处理大量不同机密数据的问题,策略编排技术已成为安全焦点。这些解决方案旨在集中管理数据可见性、访问和治理的复杂动态,确定谁有权同时查看多个数据源的内容、时间和时间。零信任正在推动这种访问治理的紧迫性和方向。

策略编排与基于属性的访问控制 (ABAC) 技术相结合,提供了一些独特的功能:能够以动态和安全的方式监督和管理谁可以查看哪些数据这一复杂的挑战。它建立在零信任架构之上,提供真正的以数据为中心的安全性 (DCS)。

通过利用与用户、数据和环境相关的属性或特征,ABAC 可以实现细粒度的访问控制。这意味着可以根据相关属性的综合评估,针对每个请求动态定制访问决策。这种以数据为中心的动态方法在能力生命周期管理(CLMC)生态系统中至关重要,因为实现这一点的信息和技术结构需要系统之间和用户之间的受控信息流。 

人工智能技术已从科幻小说世界变为现实,其中一项挑战是人工智能技术,特别是它们成为未经授权的数据泄露渠道的能力。人工智能系统可以简单地深入挖掘海量数据,并可能向询问者泄露敏感信息,这带来了巨大的风险。人工智能和相关的高级分析功能正在激增,因为它们是实现工业 4.0 模型的关键推动因素。

在此背景下,策略编排技术成为关键的保障措施,确保数据访问和共享受到通用安全策略的控制,无论数据存储在何处。这种治理机制不仅是有益的,而且可能很快就会成为强制性的,成为网络安全保险要求的基石。 

随着敏感数据的数量和复杂性不断增长,对策略编排技术等高级解决方案的需求也将随之增加。通过对数据访问、可视化和共享进行基于策略的精确控制,这些技术成为在不断发展的数字环境中保护敏感信息的关键。 

随着国防和工业界寻求简化数据集成和安全的复杂性以加速决策过程,投资于复杂的、政策驱动的数据安全措施变得至关重要。通过这样做,国防组织可以确保其敏感数据受到保护、合规,并且最重要的是可操作。

搜索关注公众号: 网络研究观 阅读更多信息

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网络研究观

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值