上一个教程 : 拉普拉斯算子
下一个教程 : 霍夫线变换
原作者 | Ana Huamán |
---|---|
兼容性 | OpenCV >= 3.0 |
目标
在本教程中,您将学习如何
- 使用 OpenCV 函数 cv::Canny 实现 Canny 边缘检测器。
原理
Canny 边缘检测器 [45] 由 John F. Canny 于 1986 年开发。Canny 算法也被许多人称为最优检测器,它旨在满足三个主要标准:
- 低错误率: 即只对存在的边缘进行良好的检测。
- 良好的定位: 检测到的边缘像素与真实边缘像素之间的距离必须最小。
- 最小响应: 每个边缘只有一个检测器响应。
步骤
-
滤除噪音。为此可使用高斯滤波器。下面是可能使用的尺寸=5 的高斯内核的示例:
K = 1 159 [ 2 4 5 4 2 4 9 12 9 4 5 12 15 12 5 4 2 9 4 12 5 9 4 4 2 ] K=\frac{1}{159}\left[ \begin{matrix} 2& 4& 5& \begin{matrix} 4& 2\\ \end{matrix}\\ 4& 9& 12& \begin{matrix} 9& 4\\ \end{matrix}\\ 5& 12& 15& \begin{matrix} 12& 5\\ \end{matrix}\\ \begin{array}{c} 4\\ 2\\ \end{array}& \begin{array}{c} 9\\ 4\\ \end{array}& \begin{array}{c} 12\\ 5\\ \end{array}& \begin{matrix} \begin{array}{c} 9\\ 4\\ \end{array}& \begin{array}{c} 4\\ 2\\ \end{array}\\ \end{matrix}\\ \end{matrix} \right] K=1591 245424912945121512542941259442 -
找到图像的强度梯度。为此,我们采用与索贝尔类似的程序:
a. 应用一对卷积掩码(x 和 y 方向):
G x = [ − 1 0 + 1 − 2 0 + 2 − 1 0 + 1 ] G_x=\left[ \begin{matrix} -1& 0& +1\\ -2& 0& +2\\ -1& 0& +1\\ \end{matrix} \right] Gx= −1−2−1000+1+2+1
G y = [ − 1 − 2 − 1 0 0 0 + 1 + 2 + 1 ] G_y=\left[ \begin{matrix} -1& -2& -1\\ 0& 0& 0\\ +1& +2& +1\\ \end{matrix} \right] Gy= −10+1−20+2−10+1
b. 求梯度强度和方向:
G = G x 2 + G x 2 G=\sqrt{G_x^2+G_x^2} G=Gx2+Gx2
θ = arctan ( G y G x ) \theta =\arctan \left( \frac{G_y}{G_x} \right) θ=arctan(GxGy)方向取整为四个可能角度之一(即 0、45、90 或 135)
-
应用非最大值抑制。这将删除不被认为是边缘一部分的像素。因此,只会保留细线(候选边缘)。
-
滞后: 最后一步。Canny 使用两个阈值(上限和下限):
a. 如果像素梯度值高于上阈值,则该像素被视为边缘
b. 如果像素梯度值低于下阈值,则会被拒绝。
c. 如果像素梯度值介于两个阈值之间,那么只有当它与高于上阈值的像素相连时才会被接受。
Canny 推荐的上下限比例在 2:1 和 3:1 之间。
- 如需了解更多详情,您可以随时查阅自己喜欢的《计算机视觉》(Computer Vision)书籍。
代码
C++
教程代码如下所示。您也可以从此处下载
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
Mat src, src_gray;
Mat dst, detected_edges;
int lowThreshold = 0;
const int max_lowThreshold = 100;
const int ratio = 3;
const int kernel_size = 3;
const char* window_name = "Edge Map";
static void CannyThreshold(int, void*)
{
blur( src_gray, detected_edges, Size(3,3) );
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
dst = Scalar::all(0);
src.copyTo( dst, detected_edges);
imshow( window_name, dst );
}
int main( int argc, char** argv )
{
CommandLineParser parser( argc, argv, "{@input | fruits.jpg | input image}" );
src = imread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR ); // Load an image
if( src.empty() )
{
std::cout << "Could not open or find the image!\n" << std::endl;
std::cout << "Usage: " << argv[0] << " <Input image>" << std::endl;
return -1;
}
dst.create( src.size(), src.type() );
cvtColor( src, src_gray, COLOR_BGR2GRAY );
namedWindow( window_name, WINDOW_AUTOSIZE );
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
CannyThreshold(0, 0);
waitKey(0);
return 0;
}
Java
教程代码如下所示。您也可以从此处下载
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class CannyDetectorDemo {
private static final int MAX_LOW_THRESHOLD = 100;
private static final int RATIO = 3;
private static final int KERNEL_SIZE = 3;
private static final Size BLUR_SIZE = new Size(3,3);
private int lowThresh = 0;
private Mat src;
private Mat srcBlur = new Mat();
private Mat detectedEdges = new Mat();
private Mat dst = new Mat();
private JFrame frame;
private JLabel imgLabel;
public CannyDetectorDemo(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/fruits.jpg";
src = Imgcodecs.imread(imagePath);
if (src.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// 创建并设置窗口。
frame = new JFrame("Edge Map (Canny detector demo)");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// 设置内容窗格。
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// 使用内容窗格的默认边框布局。无需
// setLayout(new BorderLayout());
// 显示窗口。
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Min Threshold:"));
JSlider slider = new JSlider(0, MAX_LOW_THRESHOLD, 0);
slider.setMajorTickSpacing(10);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
lowThresh = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
Imgproc.blur(src, srcBlur, BLUR_SIZE);
Imgproc.Canny(srcBlur, detectedEdges, lowThresh, lowThresh * RATIO, KERNEL_SIZE, false);
dst = new Mat(src.size(), CvType.CV_8UC3, Scalar.all(0));
src.copyTo(dst, detectedEdges);
Image img = HighGui.toBufferedImage(dst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
public static void main(String[] args) {
// 加载本地 OpenCV 库
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// 为事件派发线程安排任务:
// 创建并显示此应用程序的图形用户界面。
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CannyDetectorDemo(args);
}
});
}
}
Python
教程代码如下所示。您也可以从此处下载
from __future__ import print_function
import cv2 as cv
import argparse
max_lowThreshold = 100
window_name = 'Edge Map'
title_trackbar = 'Min Threshold:'
ratio = 3
kernel_size = 3
def CannyThreshold(val):
low_threshold = val
img_blur = cv.blur(src_gray, (3,3))
detected_edges = cv.Canny(img_blur, low_threshold, low_threshold*ratio, kernel_size)
mask = detected_edges != 0
dst = src * (mask[:,:,None].astype(src.dtype))
cv.imshow(window_name, dst)
parser = argparse.ArgumentParser(description='Code for Canny Edge Detector tutorial.')
parser.add_argument('--input', help='Path to input image.', default='fruits.jpg')
args = parser.parse_args()
src = cv.imread(cv.samples.findFile(args.input))
if src is None:
print('Could not open or find the image: ', args.input)
exit(0)
src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
cv.namedWindow(window_name)
cv.createTrackbar(title_trackbar, window_name , 0, max_lowThreshold, CannyThreshold)
CannyThreshold(0)
cv.waitKey()
- 该程序有何作用?
- 要求用户输入一个数值,为我们的 Canny 边缘检测器设置下限(通过 Trackbar)。
- 应用 Canny 检测器并生成遮罩(黑色背景上代表边缘的亮线)。
- 将获得的掩码应用于原始图像,并在窗口中显示。
说明(C++ 代码)
- 创建一些所需的变量:
Mat src, src_gray;
Mat dst, detected_edges;
int lowThreshold = 0;
const int max_lowThreshold = 100;
const int ratio = 3;
const int kernel_size = 3;
const char* window_name = "Edge Map";
请注意以下几点:
a. 我们将下阈值与上阈值的比率设定为 3:1(比率可变)。
b. 我们将核大小设置为 3(用于 Canny 函数内部执行的 Sobel 运算)。
c. 我们将下阈值的最大值设置为 100。
2. 加载源图像:
CommandLineParser parser( argc, argv, "{@input | fruits.jpg | input image}" );
src = imread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR ); // 载入图像
if( src.empty() )
{
std::cout << "Could not open or find the image! << std::endl;
std::cout << "Usage: " << argv[0] << " <输入图像>" << std::endl;
return -1;
}
- 创建与 src 类型和大小相同的矩阵(即 dst):
dst.create( src.size(), src.type() );
- 使用函数 cv::cvtColor 将图像转换为灰度图像:
cvtColor( src, src_gray, COLOR_BGR2GRAY );
- 创建一个窗口来显示结果:
namedWindow( window_name, WINDOW_AUTOSIZE );
- 创建一个轨迹条,供用户输入 Canny 检测器的下限阈值:
createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
请注意以下几点:
a. 要由 Trackbar 控制的变量是 lowThreshold,其限制为 max_lowThreshold(我们之前将其设置为 100)。
b. 每次 Trackbar 注册动作时,都会调用回调函数 CannyThreshold。
- 让我们逐步检查 CannyThreshold 函数:
a. 首先,我们使用内核大小为 3 的滤波器模糊图像:
blur( src_gray, detected_edges, Size(3,3) );
b. 其次,我们应用 OpenCV 函数 cv::Canny :
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
其中参数如下
- detected_edges: 源图像,灰度
- detected_edges: 检测器的输出(可以与输入相同)
- lowThreshold:低阈值: 用户移动轨迹条时输入的值
- highThreshold: 在程序中设置为低阈值的三倍(遵循 Canny 的建议)
- kernel_size: 我们将其定义为 3(内部使用的 Sobel 内核大小)
- 我们将 dst 图像填充为零(即图像全黑)。
dst = Scalar::all(0); - 最后,我们将使用函数 cv::Mat::copyTo 仅映射图像中被识别为边缘的区域(黑色背景)。不过,它只会复制像素值不为零的位置。由于 Canny 检测器的输出是黑色背景上的边缘轮廓,因此生成的 dst 将在除检测到的边缘以外的所有区域都是黑色的。
src.copyTo( dst, detected_edges);
- 显示结果
imshow( window_name, dst );
结果
- 编译完上面的代码后,我们就可以以图像的路径作为参数运行它了。例如,输入以下图片:
- 移动滑块,尝试不同的阈值,我们会得到以下结果:
- 请注意图像在边缘区域与黑色背景的叠加效果。