【MATLAB第25期】基于MATLAB的LSTM深度学习模型的自动检测时间序列数据峰值算法
一、主程序代码
clear, clc, close all
addpath(genpath('./functions')) %导入LSTM模型函数
%% 1.导入数据
load('ECGData.mat');
ecg=ECGData.Data(3,1:1000); % 可改变数量大小
Num=size(ecg,2);%选择的样本数量
W = load('weights.mat'); %导入固定的权重,具有LSTM模型的权重和偏差的结构
W.t=Num; % 采样时间与数据个数保持一致
thres = 0.0001; %阈值越小 ,检测的极值点越多
%% 2.检测
marks = deep(ecg,W,Num); %ecg代表待分析的数据 ,W代表权重,Num代表样本数量
%% 3.绘图
figure
plot(ecg)
hold on
plot(marks,ecg(marks),'*r')
title('检测峰值')
二、运行结果
三、获取方式
1.阅读首页置顶文章
2.关注CSDN
3.根据自动回复消息,回复“25期”以及相应指令,即可获取对应下载方式。