还是先道歉啊 就是自学求知
又一个自称更好的!! 网上找到的就发了 不知道 大伙用的怎么样啊
更好、更快、更强 ... YOLOv7结合YOLOP的多任务版本
论文链接:https://arxiv.org/pdf/2208.11434v1.pdf
代码链接:https://github.com/CAIC-AD/YOLOPv2
在过去的十年中,多任务学习方法在解决全景驾驶感知问题方面取得了不错的成果,同时提供了高精度和高效率的性能。在为计算资源有限的实时实际自动驾驶系统设计网络时,它已成为一种流行的范例。本文提出了一种有效且高效的多任务学习网络,可同时执行交通目标检测、可行驶道路区域分割和车道检测任务。
YOLOP-v2
模型在具有挑战性的BDD100K
数据集上的准确性和速度方面实现了新的最先进 (SOTA
) 性能。特别是与之前的SOTA
模型相比,推理时间减少了一半。
1、简介
尽管计算机视觉和深度学习取得了长足的发展,但基于视觉的任务(如物体检测、分割、车道检测等)在低成本自动驾驶的应用中仍然具有挑战性。最近已经努力建立一个强大的全景驾驶感知系统,这是自动驾驶的关键组成部分之一。
全景驾驶感知系统通过摄像头或激光雷达等常见传感器,帮助自动驾驶车辆全面了解周围环境。基于相机的目标检测和分割任务通常在场景理解的实际使用中因其低成本而受到青睐。目标检测在提供交通障碍物的位置和大小信息方面发挥着重要作用,帮助自动驾驶汽车在行驶阶段做出准确及时的决策。此外,可行驶区域分割和车道段也为路径规划和提高行车安全提供了丰富的信息。
目标检测和分割是计算机视觉领域的两个长期研究课题。有一系列针对目标检测的出色工作,例如 CenterNet
、Faster R-CNN
和 YOLO
系列。常见的分割网络常用于可驱动区域分割问题,例如:UNET
、SegNet
和 PSPNet
。而对于车道检测/分割