哈哈 终于一个降温贴来了 感觉每个人都说是最强~~ 其实还是推销了一个
CIFAR-10:https://www.cs.toronto.edu/˜kriz/cifar.html
open-source code:https://github.com/clovaai/CutMix-PyTorch
open-ReID:https://github.com/Cysu/open-reid
为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
数据增强(DA)是训练最先进的深度学习系统的必要技术。本文实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
在实验上,也证明了该方法在一些现有的技术数据增强方案上有了显著的改进,例如:自动增强、裁剪、随机擦除,在图像分类、半监督图像分类、多视点多摄像机跟踪和目标检测等方面取得了很好的效果。
什么叫“数据增强”?
数据增强(Data Augmentation)是一种通过让有限的数据产生更多的等价数据来人工扩展训练数据集的技术。它是克服训练数据不足的有效手段,目前在深度学习的各个领域中应用广泛。但是由于生成的数据与真实数据之间的差异,也不可避免地带来了噪声问题。
为什么需要数据增强?
深度神经网络在许多任务中表现良好,但这些网络通常需要大量数据才能避免过度拟合。遗憾的是,许多场景无法获得大量数据&