深度学习模型数据增强之后性能变差是什么原因

在做NLP中的文本匹配任务时,想提高模型的性能,于是对数据做了普通的删除、转换等简单的数据增强操作,但是训练出来的结果特别差是什么原因,在刚开始训练时loss值就已经降得很低了,三轮之后loss变为0,但是f1只有0.27(正常情况下是0.89),请问是哪里出现问题了呢
以下是增强前以及增强后刚开始的loss变化
增强前:
在这里插入图片描述
增强后
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值