OpenSTL

OpenSTL是一个基于PyTorch的时空预测学习框架,提供灵活的代码设计和标准化基准。它涵盖多种模型和任务,包括人体动作、驾驶场景预测等,支持自定义数据的训练和评估,并具备可视化功能。通过OpenSTL,用户可以方便地开发和比较不同的时空预测算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搬来了大佬的东西啊 勿怪啊 为了自己学习仅仅

时空预测学习是一种学习范式,它使得模型能够通过在无监督的情况下从给定的过去帧预测未来帧,从而学习空间和时间的模式。尽管近年来取得了显著的进展,但由于不同的设置、复杂的实现和难以复现性,对其缺乏系统性的理解。我们提出了OpenSTL,这是一个全面的时空预测学习基准,将常见的方法分为recurrent-based和recurrent-free的模型两大类。OpenSTL提供了一个模块化和可扩展的框架,实现了各种最先进的方法。我们对包括「合成移动物体轨迹、人体动作、驾驶场景、交通流量和天气预测」等不同领域的数据集进行了标准评估。我们提供了详尽的标准评估结果和可视化样例,并发布了对应的模型权重和log记录文件。

OpenSTL的特性:

  • 「灵活的代码设计」。OpenSTL将STL算法分解为方法(训练和预测)、模型(网络架构)和模块,并提供统一的实验API。用户可以根据不同的STL任务使用灵活的训练策略和网络开发自己的STL算法。

  • 「标准化基准」。OpenSTL将支持STL算法的标准化基准,包括训练和评估,类似于许多开源项目(例如MMDetection和USB等)。

  • 「支持多种模型和任务」。OpenSTL包含了十四种有代表性的时空预测学习算法和二十四种模型,涵盖了从合成移动物体轨迹到真实世界的人体动作、驾驶场景、交通流量和天气预测等六类任务和十余个数据集。

论文:https://arxiv.org/pdf/2306.11249

代码:https://github.com/chengtan9907/OpenSTL

OpenSTL框架

OpenSTL是基于PyTorch开发的时空预测代码框架,包含了多种常用的算法和模型,提供了统一的训练、评估接口。此外,我们还提供了便捷的可视化功能,便于研究和应用过程中的效果展示。OpenSTL是高度模块化、可拓展的,用户可以灵活地基于OpenSTL来开发新的算法。

安装

OpenSTL提供了conda环境设置文件,用户可以通过以下命令轻松复现环境:

git clone https://github.com/chengtan9907/OpenSTL
cd OpenSTL
conda env create -f environment.yml
conda activate OpenSTL
python setup.py develop

我们提供了环境描述和数据集准备步骤,可以参考(docs/en/install.md).

教程:利用自定义数据构建自己的项目

我们提供了一个使用OpenSTL在自定义数据上进行训练、评估和可视化的教程。这个教程可以帮助用户快速使用OpenSTL构建自己的项目。

详细信息请参考(examples) 目录中的(examples/tutorial.ipynb)。

我们还提供了该教程的Colab演示:(https://colab.research.google.com/drive/19uShc-1uCcySrjrRP3peXf2RUNVzCjHh?usp=sharing).

标准化基准结果

详尽的标准化基准结果在(docs/en/model_zoos) 中展示,

可视化样例在(docs/en/visualization)。

这里,我们以Moving Fashion MNIST和KittiCaltech为例,展示标准化基准评估结果。

Moving Fashion MNIST的标准评估结果如下所示:

KittiCaltech的标准评估结果如下所示:

 我们以全球气象云层预测,展示可视化样例(建议在Github上看GIF动图,更清晰嗷): 

  whaosoft aiot http://143ai.com

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值