Bunny-3B

BAAI发布的Bunny系列小模型在多模态竞赛中崭露头角,特别是在高质量数据的帮助下,Bunny-3B接近大模型性能,展示了轻量化模型的强大潜力。Bunny架构灵活,支持多种Encoder和语言模型,是多模态研究的新焦点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

近期,Microsoft、Google、StabilityAI 等机构发布了多款小语言模型,并由此衍生出了一系列多模态小模型,揭开了多模态小模型全面竞赛的序幕。

在此背景下,BAAI 发布了新一代多模态小模型 Bunny 系列。特别是对高质量数据的探索,有效地挖掘了小模型的潜能,进而促进 Bunny-3B 取得全新 SOTA,在多个基准上媲美流行的 LLaVA-v1.5-13B 模型。

  • 项目地址:https://github.com/BAAI-DCAI/Bunny

  • 在线 Demo: http://bunny.dataoptim.org

作为一款性能强劲的多模态小模型,Bunny 在绝大多数基准上超越了 Imp、LLaVA-Phi、MobileVLM 等一系列近期热门模型,还取得了与 LLaVA-v1.5-13B 等大模型相当的多模态理解和推理能力。特别地,Bunny 基于 DataOptim 和 SVIT 数据项目,通过进一步优化多模态数据,得到更高质量的预训练和指令微调数据,从而令基于此训练的小模型性能逼近大模型。

Bunny 模型采用了经典的 Encoder+Projector+LLM 的架构,提供了一个可扩展的组合框架。支持多种 Vision Encoders,如 EVA CLIP、SigLIP 等,以及多种语言模型,包括 Phi-1.5、Phi-2、StableLM-2 等。           whaosoft aiot http://143ai.com

表 1

表 1 展示了各类多模态模型的评估结果对比。其中,Bunny 在大部分基准中达到了最佳性能。特别地,Bunny 在一部分指标上甚至超越了诸如 LLaVA-v1.5-13B 等更大规模的经典模型。

表 2

表 2 展示了基于本工作构造的高质量数据训练的 Bunny 系列模型的测评结果。体现出 Bunny 的高度可扩展性,即用户可以自由组合常见的视觉和语言模型,以构造符合预期的多模态小模型。

下图展示了 Bunny 的一些真实测试样例。粗体文本为用户输入,未加粗部分则为模型输出。

结语:轻量化作为多模态大模型普及的必经之路,已经成为时下新的学术和工业界研究焦点。如何在减小模型参数量和推理成本的同时,最大限度地保留和激发大模型的性能至关重要。其中,数据驱动的多模态模型研究将发挥关键作用。Bunny 系列从数据优化的角度出发,为多模态研究领域提供了一系列优质的开源模型。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值