近期,Microsoft、Google、StabilityAI 等机构发布了多款小语言模型,并由此衍生出了一系列多模态小模型,揭开了多模态小模型全面竞赛的序幕。
在此背景下,BAAI 发布了新一代多模态小模型 Bunny 系列。特别是对高质量数据的探索,有效地挖掘了小模型的潜能,进而促进 Bunny-3B 取得全新 SOTA,在多个基准上媲美流行的 LLaVA-v1.5-13B 模型。
-
项目地址:https://github.com/BAAI-DCAI/Bunny
-
在线 Demo: http://bunny.dataoptim.org
作为一款性能强劲的多模态小模型,Bunny 在绝大多数基准上超越了 Imp、LLaVA-Phi、MobileVLM 等一系列近期热门模型,还取得了与 LLaVA-v1.5-13B 等大模型相当的多模态理解和推理能力。特别地,Bunny 基于 DataOptim 和 SVIT 数据项目,通过进一步优化多模态数据,得到更高质量的预训练和指令微调数据,从而令基于此训练的小模型性能逼近大模型。
Bunny 模型采用了经典的 Encoder+Projector+LLM 的架构,提供了一个可扩展的组合框架。支持多种 Vision Encoders,如 EVA CLIP、SigLIP 等,以及多种语言模型,包括 Phi-1.5、Phi-2、StableLM-2 等。 whaosoft aiot http://143ai.com
表 1
表 1 展示了各类多模态模型的评估结果对比。其中,Bunny 在大部分基准中达到了最佳性能。特别地,Bunny 在一部分指标上甚至超越了诸如 LLaVA-v1.5-13B 等更大规模的经典模型。
表 2
表 2 展示了基于本工作构造的高质量数据训练的 Bunny 系列模型的测评结果。体现出 Bunny 的高度可扩展性,即用户可以自由组合常见的视觉和语言模型,以构造符合预期的多模态小模型。
下图展示了 Bunny 的一些真实测试样例。粗体文本为用户输入,未加粗部分则为模型输出。
结语:轻量化作为多模态大模型普及的必经之路,已经成为时下新的学术和工业界研究焦点。如何在减小模型参数量和推理成本的同时,最大限度地保留和激发大模型的性能至关重要。其中,数据驱动的多模态模型研究将发挥关键作用。Bunny 系列从数据优化的角度出发,为多模态研究领域提供了一系列优质的开源模型。