深度学习基础——线性神经网络

本文深入探讨了线性神经网络,将线性回归视为单层神经网络,并介绍了如何不使用库手动实现线性回归。接着讲解了softmax回归,阐述了softmax函数的作用和性质,以及在最大似然估计中的应用,最后讨论了softmax回归的交叉熵损失函数及其导数计算。
摘要由CSDN通过智能技术生成

线性神经网络是深度神经网络的基础,本文介绍线性神经网络的相关内容。

线性回归

虽然神经网络的模型远比线性模型复杂,然而我们依然可以用描述神经网络的方式来描述线性模型,从而把线性模型看做一个神经网络,即线性模型为单层神经网络。如果要不使用库实现线性回归,可以按照如下步骤来进行

  • 生成数据集。此处我们手动生成数据集,数据服从正态分布。

  • 读取数据集

  • 初始化模型参数

  • 定义模型

  • 定义损失函数

  • 定义优化算法

  • 训练

以Pytorch为例,如果直接应用框架,可以通过如下代码实现

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)


def load_array(data_arrays, batch_size, is_train=True):  #@save
    """构造一个PyTorch数据迭代器。"""
    dataset = data.TensorDataset(*data_arrays)
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)


# `nn` 是神经网络的缩写
from torch import nn

net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)


loss = nn.MSELoss()
trainer = torch.optim.SGD(net.parameters(), lr=0.03)


num_epochs = 3
for epoch in range(num_epochs):
    for X, y in data_iter:
        l = loss(net(X) ,y)
        trainer.zero_grad()
        l.backward()
        trainer.step()
    l = loss(net(features), labels)
    print(f'epoch {
     epoch + 1}, loss {
     l:f}')
w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)

softmax回归

softmax是社会学家邓肯·卢斯发明的函数,可以将为规范化的预测变化为非负,且总和为1,同时要求保持模型可导。softmax运算不会改变未规范化的预测之间的顺序,只会确定分配给每个类别的概率。softmax函数的导数是softmax模型分配的概率与实际发生的情况之间的差异。Softmax函数为

y ^ = softmax ⁡ ( o ) , y ^ j = exp ⁡ ( o j ) ∑ k exp ⁡ ( o k ) \hat{\mathbf{y}}=\operatorname{softmax}(\mathbf{o}), \hat{y}_{j}=\frac{\exp \left(o_{j}\right)}{\sum_{k} \exp \left(o_{k}\right)} y^=softmax(o),y^j=kexp(ok)exp(oj)

对于所有的 j j j,总有 0 ≤ y ^ ≤ 1 0 \le \hat{\mathbf{y}} \le1 0y^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值