线性神经网络是深度神经网络的基础,本文介绍线性神经网络的相关内容。
线性回归
虽然神经网络的模型远比线性模型复杂,然而我们依然可以用描述神经网络的方式来描述线性模型,从而把线性模型看做一个神经网络,即线性模型为单层神经网络。如果要不使用库实现线性回归,可以按照如下步骤来进行
-
生成数据集。此处我们手动生成数据集,数据服从正态分布。
-
读取数据集
-
初始化模型参数
-
定义模型
-
定义损失函数
-
定义优化算法
-
训练
以Pytorch为例,如果直接应用框架,可以通过如下代码实现
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)
def load_array(data_arrays, batch_size, is_train=True): #@save
"""构造一个PyTorch数据迭代器。"""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
batch_size = 10
data_iter = load_array((features, labels), batch_size)
# `nn` 是神经网络的缩写
from torch import nn
net = nn.Sequential(nn.Linear(2, 1))
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)
loss = nn.MSELoss()
trainer = torch.optim.SGD(net.parameters(), lr=0.03)
num_epochs = 3
for epoch in range(num_epochs):
for X, y in data_iter:
l = loss(net(X) ,y)
trainer.zero_grad()
l.backward()
trainer.step()
l = loss(net(features), labels)
print(f'epoch {
epoch + 1}, loss {
l:f}')
w = net[0].weight.data
print('w的估计误差:', true_w - w.reshape(true_w.shape))
b = net[0].bias.data
print('b的估计误差:', true_b - b)
softmax回归
softmax是社会学家邓肯·卢斯发明的函数,可以将为规范化的预测变化为非负,且总和为1,同时要求保持模型可导。softmax运算不会改变未规范化的预测之间的顺序,只会确定分配给每个类别的概率。softmax函数的导数是softmax模型分配的概率与实际发生的情况之间的差异。Softmax函数为
y ^ = softmax ( o ) , y ^ j = exp ( o j ) ∑ k exp ( o k ) \hat{\mathbf{y}}=\operatorname{softmax}(\mathbf{o}), \hat{y}_{j}=\frac{\exp \left(o_{j}\right)}{\sum_{k} \exp \left(o_{k}\right)} y^=softmax(o),y^j=∑kexp(ok)exp(oj)
对于所有的 j j j,总有 0 ≤ y ^ ≤ 1 0 \le \hat{\mathbf{y}} \le1 0≤y^