图论进阶Ⅳ(无限欧拉迹、无限图)

证明一下上篇文章的一个定理。
这条定理是Erdös等人在1938年给出的(那位Erdös!)
TH1:A graph G has a two-way infinite Euler trail iff (t1)–(t4)below hold:

(t1)G is connected,E is countable,

(t2) d G ( v ) dG(v) dG(v)is even or infinite for each v ′ ∈ V ( G ) v′∈V(G) vV(G).

(t3)G\E′ has at most two infinite components for each finite E′⊂E.

(t4)G\E′ has one infinite component for a finite E′⊂E provided that every degree is even in(V,E′).

这个two-way Euler trail,简明的说,就是把这个图拆成一根线(Euler line),one-way就意味着这根线有个头。
def:
A two-way infinite Euler trail T is a two-way infinite sequence T = ( . . . , x − 1 , x 0 , x 1 . . . ) T = (...,x_{-1},x_0,x_1...) T=(...,x1,x0,x1...) of vertices such that x i x i + 1 x_ix_{i+1} xixi+1 is a 1-1 enumeration of the edges of G.
为什么有t4?
G 2 G_2 G2满足1-3但并没有一个two-way Euler trail.(t4的意义)。再例如说:一个无限长的三角形串,两两之间共用一个顶点。他就只有one-way Euler trail。
G 和 H G和H GH说明 t 3 t_3 t3的意义.例如G,每个顶点的度都是偶数但显然没有欧拉迹。

先证必要性。1,2,3是显然的。对于4,对于这条欧拉迹我们可以确定一个n, E ′ ⊂ E n E'⊂E_n EEn, E n = { ( x i , x i + 1 ) , − n < = i < n } E_n = \{(x_i,x_{i+1}), -n<=i<n\} En={(xi,xi+1),n<=i<n},(也就是能把 E ′ E' E所有边包括的大图。)考察图 G n ( V n , E n \ E ′ ) G_n(V_n,E_n\verb|\|E') Gn(Vn,En\E) V n = { x i , − n < = i < n } V_n=\{x_i,-n<=i<n\} Vn={xi,n<=i<n},只有 x n x_n xn x − n x_{-n} xn是奇度顶点(一开始就是,减去一个偶数度还是),这就意味着连通(握手定理)。这样就满足了 t 4 t_4 t4.

再证充分性。根据 t 3 t_3 t3有两种情况:1个或2个无限连通分量。

C a s e 1 Case1 Case1:1个无限连通分量:for each finite trail T, the graph G\T has one infinite component.

我们先证明如下引理:对任意 v ∈ V ( G ) e ∈ E ( G ) v∈V(G) \quad e∈E(G) vV(G)eE(G),满足以上条件的 G G G中存在回路 T T T, such that v ∈ V ( T ) , e ∈ E ( T ) 且 G \ T 也 满 足 这 些 条 件 v∈V(T), e∈E(T) 且G\verb|\|T也满足这些条件 vV(T),eE(T)G\T

证明只需构造出 T T T即可。首先对 v v v e e e,记以 v v v开头, e − v ′ e-v' ev结尾的迹为 T ′ T' T,于是 G \ T ′ G\verb|\|T' G\T v , v ′ v,v' v,v为奇度顶点,故同属一个连通分量,另有一条路 s s s使之相连。这样 s ∪ T ′ s∪T' sT是一条回路,记为 T ′ ′ T'' T

G \ T ′ ′ G\verb|\|T'' G\T中的 有 限 分 量 有限分量 是欧拉图。于是记 H H H T ′ ′ T'' T与这些有限分量的 并 并 H H H也是欧拉图。 T T T H H H的欧拉回路, G \ T ′ G\verb|\|T' G\T只有一个无限连通分量,就是 G \ T G\verb|\|T G\T.不难验证T满足要求。

由此,就可以按照一个序列不断分割G。
存在序列 { v i : i < ω } \{v_i:i < ω\} {vi:i<ω} of vertices
and edge-disjoint circuits { T i : i < ω } \{T_i:i < ω\} {Ti:i<ω}in G such that:
( a ) x i , x i + 1 ∈ V ( T i )   f o r   i < ω , (a)x_i,x_{i+1}∈V(T_i) \verb| |for\verb| | i < ω, (a)xi,xi+1V(Ti) for i<ω,
( b ) E ( G ) = ⋃ { E ( T i ) : i < ω } (b)E(G) =⋃\{E(T_i) :i < ω\} (b)E(G)={E(Ti):i<ω}
C a s e 2 Case2 Case2:两个无限连通分量。按上面的方法,两个奇度顶点分属两个连通分量,(否则全部连通),就意味着两边分别是无限的,并各含有一个奇度顶点。可以类似的证明两边各自是一个one-way Euler line,也就是 { x 0 , . . . , x n } \{x_0,...,x_n\} {x0,...,xn}序列。此处不再赘述。

证毕。
有关无限的更多内容,参看:
https://www.doc88.com/p-3823891662844.html

补充:很多概念,在从有限到无限的过程中其实都发生了质变。
我们看一下生成树这个概念。生成树是子树中最大的一个;在无限的领域,我说一个有上界的集合是有极大元的,其实就是再说zorn引理。
所以如果想要到无限,就必须借助Zorn引理(i.e. 选择公理)。可以证明定理:
(关于选择公理,参见:https://zhuanlan.zhihu.com/p/38029151
关于选择公理和zorn引理见等价性的证明可以参见一般的测度论教科书。)

TH: If every connected graph has a spanning tree then Axiom of Choice holds.
证明:我们的目的是获得一个选择映射 f : I → A f:I\to A f:IA
A A A是一元素两两不交的集族。构造图 G G G:
V = { x } ∪ { y i , z i : i ∈ I } ∪ ⋃ i { A i : i ∈ I } V = \{x\}\cup\{y_i,z_i:i\in I\}\cup\bigcup_i\{A_i: i\in I\} V={x}{yi,zi:iI}i{Ai:iI}其中 { x } ∪ { y i , z i : i ∈ I } \{x\}\cup\{y_i,z_i:i\in I\} {x}{yi,zi:iI}是新的、两两不同的顶点。令 E = { x y i : i ∈ I } ∪ ⋃ i ∈ I { z i a , a y i : a ∈ A i } E = \{xy_i:i\in I\}\cup\bigcup_{i\in I}\{z_ia,ay_i:a\in A_i\} E={xyi:iI}iI{zia,ayi:aAi}
G G G是连通图。由假定有生成树 T T T,有:
1. { x y i : i ∈ I } ⊂ F \{xy_i:i\in I\} \subset F {xyi:iI}F
2. 每个 i ∈ I i\in I iI,存在一个确切的 a i ∈ A i a_i\in A_i aiAi使得 z i a i , a i y i ∈ F z_ia_i,a_iy_i\in F ziai,aiyiF
3. 对每个 a ∈ A i \ { a i } a\in A_i \verb|\|\{a_i\} aAi\{ai},有 z i a ∈ F    ⟺    a y i ∉ F z_ia\in F \iff ay_i\notin F ziaFayi/F.
这样 f ( i ) = a i f(i) = a_i f(i)=ai

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值