机器学习实战【9】(岭回归和Lasso)

本文介绍了机器学习中的岭回归和Lasso两种正则化方法,详细阐述了它们的原理与区别。岭回归通过在最小二乘法基础上引入正则项来解决多重共线性问题,而Lasso不仅解决共线性,还能进行特征选择。内容包括理论解释和Python实现,使用交叉验证确定最佳λ参数。
摘要由CSDN通过智能技术生成

本博客记录《机器学习实战》(MachineLearningInAction)的学习过程,包括算法介绍和python实现。

岭回归

岭回归(Ridge Regression),是一种线性回归方法,在最小二乘法的基础上加入一个正则项,以解决样本数少于特征数以及特征存在线性相关(多重共线性)时产生的问题。

最小二乘法

多元线性模型 y=Xβ+ϵ 中, ϵ 为残差项,残差项越小,模型也就越拟合数据。最小二乘法就是求解使得残差平方和最小的参数的方法。残差平方和RSS为:

Q(β)=(yXβ)T(yXβ)

把这个式子求导计算一波就可以推出 β 的最小二乘估计:

β^=(XTX)1XTy

如果X存在线性相关关系,或者p小于n,这时逆矩阵就无法求解。

岭回归

在最小二乘估计的基础上,岭回归增加了一项,称为岭回归估计:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值