python循环调用plt.scatter时执行速度越来越慢

当使用matplotlib.pyplot的scatter函数在循环中绘制散点图时,会发现执行速度逐渐变慢。为了解决这个问题,可以先将数据按颜色分组存储在字典中,然后一次性处理并绘制所有数据,显著提高运行速度。通过遍历字典,批量处理各组数据,使得散点图的绘制效率大幅提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天跑python代码,用到matplotlib.pyplot库的scatter函数画散点图时发现,如果对该函数进行循环调用,会导致执行速度越来越慢.
参考了网上的答案后,结合我的问题给出了下面的解决办法:

  • 问题描述
    有一组数据,需要对其中的每个数据单独分析,然后根据计算结果给予该数据一个颜色.然后将所有数据画成散点图

  • 解决循环调用的问题
    先将不同组的数据用字典保存下来,然后通过对字典的遍历,批量处理各组内的数据,执行速度大幅提升.
    大概代码如下:

for data in dataset:
    color = xx data # color 是data对应的颜色
    if color not in dict:
    	dict[color] = []
   dict[color].append(data)
for color,datas in dict:
   plt.scatter(datas, c=color)
   # 这里应该需要两组数据来表示横纵坐标,就从简吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值