老铁们,今天我们来聊聊如何通过自然语言与Neo4j图数据库进行互动,利用的是OpenAI的LLM技术。这波操作可以说是相当丝滑,能让你通过自然的提问生成Cypher查询语句,执行后返回语言化的结果。
技术背景介绍
说白了,这就是把自然语言转换成Neo4j的查询语言Cypher,解决直接用Cypher写查询的痛点。我们利用了全文本索引来提高文本值到数据库条目的映射效率,从而增强Cypher语句的准确性。
原理深度解析
核心在于将用户输入的自然语言解析为对应的数据库查询。这里,全文本索引起到了关键作用,通过它,我们可以精准地将用户提到的人物或电影名等映射到数据库条目。
环境设置
首先,你需要设置一些环境变量:
OPENAI_API_KEY=<YOUR_OPENAI_API_KEY>
NEO4J_URI=<YOUR_NEO4J_URI>
NEO4J_USERNAME=<YOUR_NEO4J_USERNAME>
NEO4J_PASSWORD=<YOUR_NEO4J_PASSWORD>
如果想要用例数据进行测试,可以运行以下Python脚本,这会往数据库灌入电影数据并创建名为entity
的全文本索引:
python ingest.py
实战代码演示
要使用这个包,你得先安装LangChain CLI:
pip install -U langchain-cli
然后,你可以创建一个新的LangChain项目并安装这个包:
langchain app new my-app --package neo4j-cypher-ft
或者,把它添加到现有项目中:
langchain app add neo4j-cypher-ft
添加以下代码到你的server.py
文件:
from neo4j_cypher_ft import chain as neo4j_cypher_ft_chain
add_routes(app, neo4j_cypher_ft_chain, path="/neo4j-cypher-ft")
优化建议分享
建议在使用过程中配置LangSmith来追踪和调试应用。你可以通过以下命令启用:
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
补充说明和总结
最后,你可以通过以下命令启动一个LangServe实例:
langchain serve
这样就可以通过http://localhost:8000访问本地运行的FastAPI应用,并进行调试了。
今天的技术分享就到这里,希望对大家有帮助。开发过程中遇到问题也可以在评论区交流~
—END—