在人工智能领域,向量存储是一种常用的数据存储方式,它能有效地进行相似性搜索和推荐系统的构建。这篇文章将介绍如何使用ChromaVectorStore进行向量的存储与查询。
什么是ChromaVectorStore?
ChromaVectorStore 是一个向量存储解决方案,它利用ChromaDB作为底层数据库,用于存储和查询嵌入向量。在查询时,它会使用ChromaDB来检索最相似的节点。
安装依赖
在使用ChromaVectorStore之前,需要先安装相关的库。
pip install llama-index-vector-stores-chroma
创建Chroma客户端和集合
以下是一个基础的例子,展示了如何创建一个Chroma客户端和集合,并将其用于向量存储。
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
# 创建一个Chroma客户端和集合
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("example_collection")
# 设置ChromaVectorStore和存储上下文
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
添加节点
您可以将带有嵌入向量的节点添加到ChromaVectorStore中。
nodes = [
# 示例节点
{"id": "node1", "embedding": [0.1, 0.2, 0.3]},
{"id": "node2", "embedding": [0.4, 0.5, 0.6]},
]
vector_store.add(nodes)
查询节点
您可以根据查询向量检索最相似的节点。
query_embedding = [0.1, 0.2, 0.3]
similarity_top_k = 2
query_result = vector_store.query(query_embedding=query_embedding, similarity_top_k=similarity_top_k)
print(query_result)
可能遇到的错误
-
模块未找到错误(ModuleNotFoundError):
- 解决方法:确保你已经安装
llama-index-vector-stores-chroma
。
pip install llama-index-vector-stores-chroma
- 解决方法:确保你已经安装
-
连接错误(ConnectionError):
- 解决方法:确保ChromaDB服务正在运行,并且你能够连接到它。
-
类型错误(TypeError):
- 解决方法:确保你传递的参数类型与函数签名要求的类型一致。
参考资料
如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!