使用 LlamaIndex 解析不同格式的文档

在现代的人工智能应用中,处理和解析各种格式的文档是一个常见的需求。本文将介绍如何使用 LlamaIndex 库中的各种 NodeParser 来解析不同格式的文档,包括 HTML、JSON 和 Markdown 等。

简单文件节点解析器 (SimpleFileNodeParser)

我们可以使用 SimpleFileNodeParser 来解析简单的文件类型,如 Markdown 文件。下面是一个例子:

from llama_index.core.node_parser import SimpleFileNodeParser
from llama_index.readers.file import FlatReader
from pathlib import Path

# 加载 Markdown 文档
md_docs = FlatReader().load_data(Path("./test.md"))

# 创建解析器实例
parser = SimpleFileNodeParser()

# 从文档中获取节点
md_nodes = parser.get_nodes_from_documents(md_docs)

HTML 节点解析器 (HTMLNodeParser)

HTMLNodeParser 使用 BeautifulSoup 来解析原始 HTML。默认情况下,它会解析一些特定的 HTML 标签。

from llama_index.core.node_parser import HTMLNodeParser

# 创建 HTML 解析器,指定需要解析的标签
parser = HTMLNodeParser(tags=["p", "h1"])

# 从 HTML 文档中获取节点
nodes = parser.get_nodes_from_documents(html_docs)

JSON 节点解析器 (JSONNodeParser)

JSONNodeParser 用于解析原始 JSON 文本。

from llama_index.core.node_parser import JSONNodeParser

# 创建 JSON 解析器实例
parser = JSONNodeParser()

# 从 JSON 文档中获取节点
nodes = parser.get_nodes_from_documents(json_docs)

Markdown 节点解析器 (MarkdownNodeParser)

MarkdownNodeParser 用于解析原始的 Markdown 文本。

from llama_index.core.node_parser import MarkdownNodeParser

# 创建 Markdown 解析器实例
parser = MarkdownNodeParser()

# 从 Markdown 文档中获取节点
nodes = parser.get_nodes_from_documents(markdown_docs)

代码分割器 (CodeSplitter)

CodeSplitter 根据代码的语言将原始代码文本进行分割。

from llama_index.core.node_parser import CodeSplitter

# 创建代码分割器实例
splitter = CodeSplitter(
    language="python",
    chunk_lines=40,  # 每块的行数
    chunk_lines_overlap=15,  # 块之间的重叠行数
    max_chars=1500,  # 每块的最大字符数
)

# 从文档中获取节点
nodes = splitter.get_nodes_from_documents(documents)

句子分割器 (SentenceSplitter)

SentenceSplitter 尝试在尊重句子边界的情况下进行文本分割。

from llama_index.core.node_parser import SentenceSplitter

# 创建句子分割器实例
splitter = SentenceSplitter(
    chunk_size=1024,
    chunk_overlap=20,
)

# 从文档中获取节点
nodes = splitter.get_nodes_from_documents(documents)

使用 Langchain 的节点解析器 (LangchainNodeParser)

你还可以用 Langchain 提供的文本分割器来包装节点解析器。

from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index.core.node_parser import LangchainNodeParser

# 创建 Langchain 解析器实例
parser = LangchainNodeParser(RecursiveCharacterTextSplitter())

# 从文档中获取节点
nodes = parser.get_nodes_from_documents(documents)

可能遇到的错误

  1. 文件路径错误:确保提供的文件路径是正确的,并且文件存在于指定路径。
  2. 格式不支持:某些解析器可能不支持特定的文档格式,需要根据文档类型选择合适的解析器。
  3. 依赖库缺失:例如,使用 HTMLNodeParser 时需要安装 BeautifulSoup。可以通过 pip install beautifulsoup4 来安装。

如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值