使用MLX在本地运行大型语言模型:详细教程与实践

使用MLX在本地运行大型语言模型:详细教程与实践

1. 引言

随着人工智能技术的快速发展,大型语言模型(LLM)已成为自然语言处理领域的重要工具。然而,运行这些模型通常需要强大的计算资源和稳定的网络连接。本文将介绍如何使用MLX框架在本地运行大型语言模型,让开发者能够更灵活地使用这些强大的AI工具。

MLX是一个由Apple开发的机器学习框架,专为Apple Silicon芯片优化。它允许开发者在本地设备上高效运行各种机器学习模型,包括大型语言模型。本文将深入探讨如何使用MLX和LangChain库来设置和运行这些模型。

2. 环境准备

在开始之前,我们需要安装必要的Python包。运行以下命令来安装所需的库:

pip install --upgrade mlx-lm transformers huggingface_hub langchain

3. 加载MLX模型

MLX社区在Hugging Face Model Hub上提供了超过150个开源模型。我们可以通过MLXPipeline类来加载这些模型。以下是加载模型的两种方法:

方法1:使用模型ID

from langchain_community.llms.mlx_pipeline import MLXPipeline

pipe = MLXPipeline.from_model_id(
    "mlx-community/quantized-gemma-2b-it",
    pipeline_kwargs={
   "max_tokens": 10, "temp": <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值