使用MLX在本地运行大型语言模型:详细教程与实践
1. 引言
随着人工智能技术的快速发展,大型语言模型(LLM)已成为自然语言处理领域的重要工具。然而,运行这些模型通常需要强大的计算资源和稳定的网络连接。本文将介绍如何使用MLX框架在本地运行大型语言模型,让开发者能够更灵活地使用这些强大的AI工具。
MLX是一个由Apple开发的机器学习框架,专为Apple Silicon芯片优化。它允许开发者在本地设备上高效运行各种机器学习模型,包括大型语言模型。本文将深入探讨如何使用MLX和LangChain库来设置和运行这些模型。
2. 环境准备
在开始之前,我们需要安装必要的Python包。运行以下命令来安装所需的库:
pip install --upgrade mlx-lm transformers huggingface_hub langchain
3. 加载MLX模型
MLX社区在Hugging Face Model Hub上提供了超过150个开源模型。我们可以通过MLXPipeline
类来加载这些模型。以下是加载模型的两种方法:
方法1:使用模型ID
from langchain_community.llms.mlx_pipeline import MLXPipeline
pipe = MLXPipeline.from_model_id(
"mlx-community/quantized-gemma-2b-it",
pipeline_kwargs={
"max_tokens": 10, "temp": <