第三期书生大模型实战营 进阶岛第3关LMDeploy 量化部署进阶实践

环境准备

conda create -n lmdeploy  python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。

运行以下命令,创建文件夹并设置开发机共享目录的软链接。

mkdir /root/models
ln -s /root/share/new_models//Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models

此时,我们可以看到/root/models中会出现internlm2_5-7b-chatInternVL2-26B文件夹。
LMDeploy验证启动模型文件
在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。

让我们进入创建好的conda环境并启动InternLM2_5-7b-chat

conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-7b-chat

在这里插入图片描述
显存占用情况
在这里插入图片描述

   那么这是为什么呢?由上文可知InternLM2.5    7B模型为bf16,LMDpeloy推理精度为bf16的7B模型权重需要占用14GB显存;如下图所示,lmdeploy默认设置cache-max-entry-count为0.8,即kv    cache占用剩余显存的80%;
   此时对于24GB的显卡,即30%A100,权重占用14GB显存,剩余显存24-14=10GB,因此kv
   cache占用10GB*0.8=8GB,加上原来的权重14GB,总共占用14+8=22GB。
   
   而对于40GB的显卡,即50%A100,权重占用14GB,剩余显存40-14=26GB,因此kv
   cache占用26GB*0.8=20.8GB,加上原来的权重14GB,总共占用34.8GB。
   
   实际加载模型后,其他项也会占用部分显存,因此剩余显存比理论偏低,实际占用会略高于22GB和34.8GB

在这里插入图片描述

LMDeploy API部署InternLM2.5

启动API服务器

首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:

conda activate lmdeploy
lmdeploy serve api_server \
    /root/puyu/8/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1
	 命令解释:
	lmdeploy serve api_server:这个命令用于启动API服务器。
	/root/models/internlm2_5-7b-chat:这是模型的路径。
	--model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。
	--quant-policy 0:这个参数指定了量化策略。
	--server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。
	--server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。
	--tp 1:这个参数表示并行数量(GPU数量)。

在这里插入图片描述
这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:

 ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号

在这里插入图片描述

以命令行形式连接API服务器

lmdeploy serve api_client http://localhost:23333

在这里插入图片描述

以Gradio网页形式连接API服务器

保持第一个终端不动,在新建终端中输入exit退出。

输入以下命令,使用Gradio作为前端,启动网页

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

在这里插入图片描述
在这里插入图片描述

LMDeploy Lite

随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。

设置最大kv cache缓存大小

kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploykv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。

首先我们先来回顾一下InternLM2.5正常运行时占用显存。
在这里插入图片描述
那么试一试执行以下命令,再来观看占用显存情况。

lmdeploy chat /root/models/internlm2_5-7b-chat --cache-max-entry-count 0.4

观测显存占用情况,可以看到减少了约25GB的显存
在这里插入图片描述
1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB
2、kv cache占用54.8GB:剩余显存82-14=68GB,kv cache默认占用80%,即680.8=54.8GB
对于修改kv cache占用之后的显存占用情况
1、在 BF16 精度下,7B模型权重占用14GB:70×10^9 parameters×2 Bytes/parameter=14GB
2、kv cache占用54.8GB:剩余显存82-14=68GB,kv cache默认占用40%,即68
0.4=27.2GB

设置在线 kv cache int4/int8 量化

自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 qant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。

lmdeploy serve api_server \
    /root/models/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

在这里插入图片描述

W4A16 模型量化和部署

准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

那么标题中的W4A16又是什么意思呢?

  • W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
  • A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。
    因此,W4A16的量化配置意味着:
  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。
lmdeploy lite auto_awq \
   /root/puyu/8/models/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/puyu/8/models/internlm2_5-7b-chat-w4a16-4bit
	命令解释:
	
	lmdeploy lite auto_awq: lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。
	/root/models/internlm2_5-7b-chat: 模型文件的路径。
	--calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。
	--calib-samples 128: 这指定了用于校准的样本数量—128个样本
	--calib-seqlen 2048: 这指定了校准过程中使用的序列长度—1024
	--w-bits 4: 这表示权重(weights)的位数将被量化为4位。
	--work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。

在这里插入图片描述

在这里插入图片描述
那么显存占用情况对比呢?输入以下指令启动量化后的模型。

lmdeploy chat /root/models/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

LMDeploy与InternVL2

本次实践选用InternVL2-26B进行演示,其实就根本来说作为一款VLM和上述的InternLM2.5在操作上并无本质区别,仅是多出了"图片输入"这一额外步骤,但作为量化部署进阶实践,选用InternVL2-26B目的是带领大家体验一下LMDeploy的量化部署可以做到何种程度。

LMDeploy Lite

InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。

conda activate lmdeploy
lmdeploy lite auto_awq \
   /root/puyu/8/models/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/puyu/8/models/InternVL2-26B-w4a16-4bit

LMDeploy之FastAPI与Function call

API开发

与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。

conda activate lmdeploy
lmdeploy serve api_server \
    /root/models/internlm2_5-1_8b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py。

touch /root/internlm2_5_.py

双击打开,并将以下内容复制粘贴进internlm2_5_func.py

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

Function call

关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。
让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py。

touch /root/internlm2_5_func.py

双击打开,并将以下内容复制粘贴进internlm2_5_func.py

完成作业

在这里插入图片描述
作业1
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
作业2
在这里插入图片描述
使用1.8B模型调用不成功,需要使用7b模型

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值