【书生大模型实战营】LMDeploy 量化部署进阶实践

【书生大模型实战营】LMDeploy 量化部署进阶实践

任务

  • 使用结合W4A16量化与kv cache量化的internlm2_5-7b-chat模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复,参考4.1 API开发(优秀学员必做)
  • 使用Function call功能让大模型完成一次简单的"加"与"乘"函数调用,作业截图需包括大模型回复的工具调用情况,参考4.2 Function call(选做)

环境

说明:对于一个7B(70亿)参数的模型,每个参数使用16位浮点数(等于 2个 Byte)表示,则模型的权重大小约为:

70×10^9 parameters×2 Bytes/parameter=14GB

70亿个参数×每个参数占用2个字节=14GB

使用上一节创建好的agent环境,然后安装一些依赖:

conda activate agent_camp3
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3

然后设置要用到模型文件的软链接:

ln -s /root/share/new_models//Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/model
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/model

然后对InternLM2_5-7b-chat进行部署验证:

lmdeploy chat /root/model/internlm2_5-7b-chat

结果如下:
在这里插入图片描述
此时显存占用是接近23G:
在这里插入图片描述

将大模型封装为API接口服务

以InternLM2.5为例,在vscode命令行运行如下命令:

lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

其中:

  • quant-policy:这个参数指定了量化策略。
  • tp:这个参数表示并行数量(GPU数量)。
  • model-format:这个参数指定了模型的格式。hf代表“Hugging Face”格式。

得到如下界面,是一个FastAPI请求格式的命令说明:
在这里插入图片描述

以命令行形式连接API服务器

新建一个命令行窗口,运行:

lmdeploy serve api_client http://localhost:23333

得到如下结果:
在这里插入图片描述
上面API界面回应如下:
在这里插入图片描述
此时调用了/v1/chat/interactive这个接口。

以Gradio网页形式连接API服务器

退出上面创建的命令行终端,输入以下命令,使用Gradio作为前端,启动网页:

lmdeploy serve gradio http://localhost:23333 \
    --server-name 0.0.0.0 \
    --server-port 6006

结果如下:
在这里插入图片描述

LMDeploy Lite和InternLM

kv cache

在使用lmdeploy chat /root/models/internlm2_5-7b-chat,引入cache-max-entry-count变量设置,控制kv缓存占用剩余显存的最大比例,默认值为0.8,如:

lmdeploy chat /root/model/internlm2_5-7b-chat --cache-max-entry-count 0.4

这个命令是在命令行和模型进行交互的,此时显存占用只有19G,跟0.8相比减少了4G。
在这里插入图片描述

在线 kv cache int4/int8 量化:创建API服务时使用KV cache nt4/int8 量化,就是将kv cache的存储类型用int4或者int8代替。通过设定 quant_policy cache-max-entry-count参数:

  • quant_policy :qant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化
  • cache-max-entry-count:kv cache比例
lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

这个命令是通过接口的方式和大模型进行交互的。相比使用BF16精度的kv cache,int4的Cache可以在相同4GB的显存下只需要4位来存储一个数值,而BF16需要16位。这意味着int4的Cache可以存储的元素数量是BF16的四倍。

此时占用的显存为:
在这里插入图片描述

W4A16 模型量化和部署

模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。

W4A16的量化配置意味着:

  • 权重被量化为4位整数。
  • 激活保持为16位浮点数。

使用如下命令执行量化:

lmdeploy lite auto_awq \
   /root/model/internlm2_5-7b-chat \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/model/internlm2_5-7b-chat-w4a16-4bit

相关参数解释如下:

  • lmdeploy lite auto_awq:启动量化,auto_awq代表自动权重量化(auto-weight-quantization)
  • calib-dataset 'ptb': 这个参数指定了一个校准数据集
  • w-bits 4: 这表示权重(weights)的位数将被量化为4位。
  • work-dir: 这是工作目录的路径,用于存储量化后的模型和中间结果。

如果出现错误The repository for ptb_text_only contains custom code which must be executed to correctly load the dataset.,添加如下指令:

export HF_ENDPOINT=https://hf-mirror.com 

W4A16 量化+ KV cache+KV cache 量化

使用如下命令,将这些方案全部使用(时间比较长,大概5个多小时):

lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

注意这里使用的模型是W4A16量化后的模型,同时model-format参数也变成了awq,不是hf了。

最终得到的模型大小为:
在这里插入图片描述
只有4.9G了,而原始模型的大小有15G。
然后使用如下命令运行模型:

lmdeploy chat /root/model/internlm2_5-7b-chat-w4a16-4bit/ --model-format awq

LMDeploy与InternVL2

进行InternVL2的W4A16量化(大概10个小时),代码为:

lmdeploy lite auto_awq \
   /root/model/InternVL2-26B \
  --calib-dataset 'ptb' \
  --calib-samples 128 \
  --calib-seqlen 2048 \
  --w-bits 4 \
  --w-group-size 128 \
  --batch-size 1 \
  --search-scale False \
  --work-dir /root/model/InternVL2-26B-w4a16-4bit

然后使用如下命令启用API服务:

lmdeploy serve api_server \
    /root/model/InternVL2-26B-w4a16-4bit \
    --model-format awq \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

不过这个30%的跑不起来,显存会爆,需要使用50%的。

LMDeploy之FastAPI与Function call

API开发

先启动API服务:

lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat-w4a16-4bit \
    --model-format awq \
    --cache-max-entry-count 0.4 \
    --quant-policy 4 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

然后创建internlm2_5.py文件,将如下内容粘贴:

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

然后新建一个命令行窗口,运行python internlm2_5.py,得到如下结果:
在这里插入图片描述
API服务开启界面的反应:
在这里插入图片描述

Function call

启动没有量化的模型(使用量化的后面调用函数会报错 'NoneType' object is not subscriptable):

lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat \
    --model-format hf \
    --quant-policy 0 \
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

抱持API服务的窗口不变,继续创建internlm2_5_func.py文件,内容如下:

from openai import OpenAI


def add(a: int, b: int):
    return a + b


def mul(a: int, b: int):
    return a * b


tools = [{
    'type': 'function',
    'function': {
        'name': 'add',
        'description': 'Compute the sum of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}, {
    'type': 'function',
    'function': {
        'name': 'mul',
        'description': 'Calculate the product of two numbers',
        'parameters': {
            'type': 'object',
            'properties': {
                'a': {
                    'type': 'int',
                    'description': 'A number',
                },
                'b': {
                    'type': 'int',
                    'description': 'A number',
                },
            },
            'required': ['a', 'b'],
        },
    }
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]

client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)

messages.append({
    'role': 'assistant',
    'content': response.choices[0].message.content
})
messages.append({
    'role': 'environment',
    'content': f'3+5={func1_out}',
    'name': 'plugin'
})
response = client.chat.completions.create(
    model=model_name,
    messages=messages,
    temperature=0.8,
    top_p=0.8,
    stream=False,
    tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)

得到的结果如下:
在这里插入图片描述
这种工具感觉会根据函数自动对指令进行分析,将(3+5)2分成了(3+5)和82。

任务记录

使用如下命令开启量化后模型的API服务:

lmdeploy serve api_server \
    /root/model/internlm2_5-7b-chat-w4a16-4bit/ \
    --model-format awq \
    --quant-policy 4 \
    --cache-max-entry-count 0.4\
    --server-name 0.0.0.0 \
    --server-port 23333 \
    --tp 1

然后在命令行指定接口和大模型进行交流:

lmdeploy serve api_client http://localhost:23333

此时大模型的回复和显存占用为:
在这里插入图片描述
然后我们尝试在文件里面和量化后的模型进行交流,创建internlm2_5_awq.py文件,内容为:

# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI


# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(
    api_key='YOUR_API_KEY',  
    # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可
    base_url="http://0.0.0.0:23333/v1"  
    # 指定API的基础URL,这里使用了本地地址和端口
)

# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id

# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(
  model=model_name,  
  # 指定要使用的模型ID
  messages=[  
  # 定义消息列表,列表中的每个字典代表一个消息
    {"role": "system", "content": "你是一个友好的小助手,负责解决问题."},  
    # 系统消息,定义助手的行为
    {"role": "user", "content": "李白是谁"},  
    # 用户消息,询问时间管理的建议
  ],
    temperature=0.8,  
    # 控制生成文本的随机性,值越高生成的文本越随机
    top_p=0.8  
    # 控制生成文本的多样性,值越高生成的文本越多样
)

# 打印出API的响应结果
print(response.choices[0].message.content)

然后运行,得到的结果如下:
在这里插入图片描述
最后实现function call功能。直接套用之前的代码会报错,应该是量化过后模型的理解能力下降了,查看输出的response可以出现了解析错误:
在这里插入图片描述
这个时候我们尝试更改temperaturetop_p,这两个参数的意义为:

  • temperature:这个值越大生成内容越随机,多样性更好,但可能会牺牲一些准确性或连贯性。具体地,temperature 会调整概率输出的softmax概率分布,如果 temperature 的值为1,则没有任何调整;如果其值比1大,则会生成更加随机的文本;如果其值比1小,则生成的文本更加保守。
  • top_p:单步累计采用阈值,越大越多token会被考虑。如果累计概率已经超过0.95,剩下的token不会被考虑例如有下面的token及其概率,a:0.9,b:0.03,c:0.03,d:0.015,e… 。则只会采用用abc,因为已经是0.96超过了0.95

修改temperature=1.9,top_p=0.9,得到的结果为(尝试了多次,因为结果随机):
在这里插入图片描述
但它没有使用tool_calls,调整参数也不行。

不知道咋解决了,暂时放在这里吧,感觉还是它理解能力下降了,导致模型无法解析。

  • 18
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lzl2040

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值