来啃硬骨头——费波纳茨(Fibonacci)矩阵快速幂 c++

全文线索:

解题引出费波纳茨——>费波纳茨递归解法——>费波纳茨动态规划解法——>矩阵快速幂解法——>补充一个费波纳茨的题

 

一、来解题

字符串只由'0'和'1'两种字符构成,
当字符串长度为1时,所有可能的字符串为"0"、"1";
当字符串长度为2时,所有可能的字符串为"00"、"01"、"10"、"11";
当字符串长度为3时,所有可能的字符串为"000"、"001"、"010"、"011"、"100"、
"101"、"110"、"111"
...
如果某一个字符串中,只要是出现'0'的位置,左边就靠着'1',这样的字符串叫作达
标字符串。
给定一个正数N,返回所有长度为N的字符串中,达标字符串的数量。
比如,N=3,返回3,因为只有"101"、"110"、"111"达标。

 

思路:

对于位置 i,假定 i 前面是1,则 i 有两种情况

i=0 时,i+1位必为1,剩下的就是 f(i-2)

i=1 时,i+1位可以是1,也可以是0,因此剩下的是 f(i-1)

f(i)= f(i-2)+ f(i-1) 因此本题可以使用费波纳茨来解。

 

二、递归解费波纳茨

int process(int i, int n){
    if(i==n) return 1;
    if(i==n-1) return 2;
    return process(i+1, n) + process(i+2, n);
}

int getNum1(int n){
	if(n<1) return 0;
	return process(1,n);
}

int main(){
	int n=30;
	//普通费波纳茨
	int normal=getNum1(n);
	cout<<normal<<endl;
	return 0;
}

 

三、动态规划

int dp(int n){
	if(n<1) return 0;
	if(n==1) return 1;
	
	vector<int>num(n+1);
	num[1]=1;
	num[2]=2;
	//第2到第n位的值
	for(int i=3; i<n+1; i++)
		num[i]=num[i-1]+num[i-2];
	cout<<num[n]<<endl;
	return num[n];
}

int main(){
	int n=30;
	//动态规划
	int dynamic=dp(n);	
	return 0;
}

 

动态规划空间优化

int dp2(int n){
	if(n<1) return 0;
	if(n==1) return 1;

	int temp=0, cur=1, pre=1;
	for(int i=2; i<n+1; i++){
		temp=cur;
		cur+=pre;
		pre=temp;
	}
	return cur;
}

 

三、快速幂

快速幂的使用场景——除了初始项之外,其余项都有要个递归式的问题,可以使用快速幂进行求解。那种有if ,else的这种不能用快速幂,快速幂要求严格的递推式。

铺垫

对于数列 f(n)=f(n-1)+f(n-2),被减数最大值为2,因此我们的矩阵是2阶的

数学公式输入不友好,直接上图吧

因此可以得到递推式——|f(n)-f(n-1)|=|f(2)-f(1)| * (n-2)次幂

a,b,c,d的值需要自行计算。亮点在于高次幂的计算,如何减少高次幂的乘积次数。

下图所示,差6阶则变成 n-6:

 

 

 

 

先来看看整数高次幂是如何做的

如何提高高次幂运算速度,比如10的75次幂。

第一步:将75拆成二进制,即1001011

第二步:两个辅助变量,t=10,res=1(用于res记录结果)

上伪代码(时间复杂度O(logn)=O(logn)(即t=t*t的次数)+O(logn)(即75的二进制为1的项与t相乘的次数)):

int t=10, res=1;
vector<int>flag={1,0,0,1,0,1,1};
for(int i=0; i<flag.size(); i++){
    if(flag[i]==1)
        res*=t;
    t*=t;
}

只有二进制位为1的t才会与res进行相乘,时间复杂度为O(logN)

res为10的75次幂的计算结果。

矩阵的高次幂计算同理。

 

 

矩阵乘法

咋算?

用代码表示矩阵乘法就是玩矩阵了

一步一步来,先看一下矩阵乘法用c++怎么实现

#include<iostream>
#include<vector>
using namespace std;

vector<vector<int>>  Matrix_multi(vector<vector<int>>&m1,vector<vector<int>>&m2){

	vector<vector<int>>res(m1.size(), vector<int>(m2[0].size()));
	for(int i=0; i<m1.size(); i++){
		for(int j=0; j<m2[0].size(); j++){
			for(int k=0; k<m1[0].size(); k++){
				res[i][j]+=m1[i][k]*m2[k][j];
			}
		}
	}
	return res;
}

int main(){
	vector<vector<int>>m1={
		{1, 2, 3,  4},
		{6, 7, 8,  9},
		{11,12,13,14}};
	vector<vector<int>>m2={
		{1, 2, 3,  4, 5},
		{6, 7, 8,  9,10},
		{11,12,13,14,15},
		{16,17,18,19,20}};
	vector<vector<int>>answer=Matrix_multi(m1,m2);
	for(auto i :answer){
		for(auto j :i)
			cout<<j<<" ";
		cout<<endl;
	}

	return 0;
}

运行结果:

 

Java的实现版本

public static int[][] muliMatrix(int[][] m1, int[][] m2) {
		int[][] res = new int[m1.length][m2[0].length];
		for (int i = 0; i < m1.length; i++) {
			for (int j = 0; j < m2[0].length; j++) {
				for (int k = 0; k < m2.length; k++) {
					res[i][j] += m1[i][k] * m2[k][j];
				}
			}
		}
		return res;
	}

 

矩阵快速幂的实现代码

//矩阵乘法
vector<vector<int>>Matrix_multi(vector<vector<int>>m1,
		vector<vector<int>>m2){
	//数组初始化
	vector<vector<int>>res(m1.size(),vector<int>(m2[0].size()));
	//行
	for(int i=0; i<m1.size(); i++){
		//列
		for(int j=0; j<m2[0].size(); j++){
			for(int k=0; k<m2.size(); k++){
				res[i][j]+=(m1[i][k]*m2[k][j]);
			}
		}
	}
	return res;
}

//p为幂次,base是事先计算出的费波纳茨对应的矩阵。矩阵的计算方法在上方
vector<vector<int>> matrixPower(vector<vector<int>>&base, int p){
	vector<vector<int>>res=
		{base.size(),vector<int>(base[0].size())};
	for(int i=0; i<res.size(); i++){
		res[i][i]=1;
	}	
	vector<vector<int>>tmp=base;
	//依次查看p的二进制位
	for(; p!=0; p>>=1){
		//如果当前二进制位为1
		if((p & 1)!=0){
			res=Matrix_multi(res, tmp);
		}
		tmp=Matrix_multi(tmp, tmp);
	}
	return res;
}

 

 

完整代码

/*
字符串只由'0'和'1'两种字符构成,
当字符串长度为1时,所有可能的字符串为"0"、"1";
当字符串长度为2时,所有可能的字符串为"00"、"01"、"10"、"11";
当字符串长度为3时,所有可能的字符串为"000"、"001"、"010"、"011"、"100"、
"101"、"110"、"111"
...
如果某一个字符串中,只要是出现'0'的位置,左边就靠着'1',这样的字符串叫作达
标字符串。
给定一个正数N,返回所有长度为N的字符串中,达标字符串的数量。
比如,N=3,返回3,因为只有"101"、"110"、"111"达标。
*/

//思路——费波纳茨
#include<iostream>
#include<vector>
using namespace std;

//费波纳茨解
int process(int i, int n){
    if(i==n) return 1;
    if(i==n-1) return 2;
    return process(i+1, n) + process(i+2, n);
}

int getNum1(int n){
	if(n<1) return 0;
	return process(1,n);
}

//动态规划
int dp(int n){
	if(n<1) return 0;
	if(n==1) return 1;
	
	vector<int>num(n+1);
	num[1]=1;
	num[2]=2;
	//第2到第n位的值
	for(int i=3; i<n+1; i++)
		num[i]=num[i-1]+num[i-2];
	cout<<"dp1="<<num[n]<<endl;
	return num[n];
}

//空间优化之后的动态规划
int dp2(int n){
	if(n<1) return 0;
	if(n==1) return 1;

	int temp=0, cur=1, pre=1;
	for(int i=2; i<n+1; i++){
		temp=cur;
		cur+=pre;
		pre=temp;
	}
	cout<<"dp2="<<cur<<endl;
	return cur;
}

//矩阵乘法
vector<vector<int>>Matrix_multi(vector<vector<int>>m1,
		vector<vector<int>>m2){
	//数组初始化
	vector<vector<int>>res(m1.size(),vector<int>(m2[0].size()));
	//行
	for(int i=0; i<m1.size(); i++){
		//列
		for(int j=0; j<m2[0].size(); j++){
			for(int k=0; k<m2.size(); k++){
				res[i][j]+=(m1[i][k]*m2[k][j]);
			}
		}
	}
	return res;
}

//p为幂次,base是事先计算出的费波纳茨对应的矩阵。矩阵的计算方法在上方
vector<vector<int>> matrixPower(vector<vector<int>>&base, int p){
	vector<vector<int>>res=
		{base.size(),vector<int>(base[0].size())};
	for(int i=0; i<res.size(); i++){
		res[i][i]=1;
	}	
	vector<vector<int>>tmp=base;
	//依次查看p的二进制位
	for(; p!=0; p>>=1){
		//如果当前二进制位为1
		if((p & 1)!=0){
			res=Matrix_multi(res, tmp);
		}
		tmp=Matrix_multi(tmp, tmp);
	}
	return res;
}

//快速幂,不会打英文,皮一下也很开心
int QuickMi(int n){
	/*
	快速幂心法:
	f(n)=f(n-1)+f(n-2),则矩阵就是2阶的(几阶看被减的最大的数)
	n阶,则需要解n*n个变量
	*/
	if(n<1) return 0;
	if(n==1) return 1;
	if(n==2) return 2;
	//事先计算出来的快速幂的基数
	vector<vector<int>>base={{1,1},{1,0}};
	//计算出最终的矩阵结果
	vector<vector<int>>res=matrixPower(base, n - 2);
	//因为结果是|f(n),f(n-1)|=|f(2),f(1)|*base矩阵,
	//|f(2),f(1)|=|2,1|,因此f(n)=2*res[0][0] + res[1][0]
	return (2*res[0][0] + res[1][0]);
}

int main(){
	int n=30;
	//普通费波纳茨
	int normal=getNum1(n);
	cout<<"normal="<<normal<<endl;
	//动态规划
	int dynamic=dp(n);
	//优化空间之后不的动态规划
	dp2(n);
	//快速幂
	int answer=QuickMi(n);
	cout<<answer<<endl;
	return 0;
}

 

 

 

 

扩展——费波纳茨适用题型

牛,每年生一个niu,小牛三岁后开始生牛,牛十岁就会死,这可以构成一个什么递推式?见下图

 

 

费波纳茨适用于

那些除了初始项之外,其余项都有严格递推式的题,有if,else的,就不适合用费波纳茨,因为他有条件转移。

 

 

补充一个费波纳茨的题

 

在迷迷糊糊的大草原上,小红捡到了n根木棍,第 i 根木棍的长度为 i,小红现在很开心。想选出其中的三根木棍组成美丽的三角形。但是小明想捉弄小红,想去掉一些木棍,使得小红任意选三根木棍都不能组成三角形。

请问小明最少去掉多少根木棍呢?
给定N,返回至少去掉多少根?

 

思考:

这题就是求1~n中有多少个费波纳茨数。因为组不成三角形的条件是Y+Z<X,我们让每个Y+Z=X就是最经济的做法了。要拿走的木根根数,就是前n个数中的非费波纳茨数啊。

 

上代码

#include<iostream>
using namespace std;

void calculate(int n){
	if(n<3) return;

	//因为第i根木棍的长度为i,因此要保留的数字为:
	//第一个数是1,第二个数是2,第三个数是3,第四个数是5
	int num=2;
	int f_1=1, f_2=2;
	while(f_2+f_1<=n){
		num++;
		f_2=f_1+f_2;
		f_1=f_2-f_1;
	}
	cout<<n-num<<endl;
}

int main(){
	int n=0;
	cin>>n;
	calculate(n);
	return 0;
}

 

 

 

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值