【学习记录】Online Realtime Action Recognition based on OpenPose使用教程

这篇博客详细介绍了如何配置Python环境,包括创建conda环境和安装TensorFlow、OpenCV、Keras等依赖库。接着,作者提供了预训练模型的下载链接,并指导将模型放入指定目录。在测试和训练部分,博主演示了如何对视频进行姿态估计,收集数据并保存为CSV格式,最后调整训练参数以开始训练模型。
摘要由CSDN通过智能技术生成

一、环境配置

1.使用anaconda创建一个新环境 py36OpenPose

conda create -n py36OpenPose python=3.6

2.按顺序安装以下模块

conda install tensorflow-gpu=1.13
pip install opencv-python==3.4.2.17
pip install keras==2.2.4
pip install scikit-learn==0.19
pip install pandas
pip install matplotlib

二、下载预训练模型

1.下载地址:http://www.mediafire.com/file/qlzzr20mpocnpa3/graph_opt.pb
在这里插入图片描述
2.把下载好的预训练模型放到 \Pose\graph_models\VGG_origin目录中
在这里插入图片描述

三、测试和训练

1.把需要测试的视频放到项目目录中
在这里插入图片描述
2.输入命令开始测试

python main.py --video=1.mp4

3.在开始训练之前我们需要收集视频里的数据,打开main.py,取消如下注释

在这里插入图片描述
在这里插入图片描述
4.再次运行测试命令,可以得到收集数据的txt文本

python main.py --video=1.mp4

在这里插入图片描述

5.用excel表打开txt文件,另存为.csv格式,保存到 项目目录\Action\training下
在这里插入图片描述
6.打开 项目目录\Action\training\train.py文件,修改以下两处地方在这里插入图片描述
在这里插入图片描述

7.运行train,py开始训练

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值