二叉树_二叉搜索树_二叉排序树

二叉排序树又称为二叉查找树,二叉搜索树。二叉排序树和普通的二叉树在结构上一样,它要么是一棵空树,要么是这样的一棵二叉树:对任意结点,如果左子树不为空,则左子树上所有结点的权值都小于该结点的权值;如果右子树不为空,则右子树上所有结点的权值都大于该结点的权值;任意结点的左子树和右子树都是一棵二叉排序树;一般而言, 二叉排序树上结点的权值都是唯一的。

在二叉排序树上,对于任意结点,如果有左子树和右子树,那么其左子树上结点的权值都小于右子树上结点的权值。

如果中序遍历二叉排序树,会得到一个从小到大的序列。

二叉排序树的插入和查找效率相对较高,最坏情况下时间复杂度为 O(n),期望的时间复杂度为 O(logn),其中 n 为树上结点总个数。

刚才我们提到了二叉排序树最坏情况下时间复杂度为 O(n),这是为什么呢?最坏情况下,二叉排序树会退化成链表,从根结点往左依次递减,或者从根结点往右依次递增。那有什么方法可以解决这个问题呢?在二叉排序树的基础上可以加些优化,可以让其成为 AVL 树,红黑树,SBT,Splay 等等,这些高级的树结构解决了上面的问题,插入和查找的效率均为 O(logn)。

不完全版实现:
#include<iostream>
using namespace std;
class Node {
public:
    int data;
    Node *lchild, *rchild, *father;
    Node(int _data, Node *_father = NULL) {
        data = _data;
        lchild = NULL;
        rchild = NULL;
        father = _father;
    }
    ~Node() {
        if (lchild != NULL) {
            delete lchild;
        }
        if (rchild != NULL) {
            delete rchild;
        }
    }
    void insert(int value) {
        if (value == data) {
            return;
        } else if (value > data) {
            if (rchild == NULL) {
                rchild = new Node(value, this);
            } else {
                rchild->insert(value);
            }
        } else {
            if (lchild == NULL) {
                lchild = new Node(value, this);
            } else {
                lchild->insert(value);
            }
        }
    }
    Node* search(int value) {
        if (data == value) {
            return this;
        } else if (value > data) {
            if (rchild == NULL) {
                return NULL;
            } else {
                return rchild->search(value);
            }
        } else {
            if (lchild == NULL) {
                return NULL;
            } else {
                return lchild->search(value);
            }
        }
    }
    Node* predecessor() {
        Node *temp = lchild;
        while (temp != NULL && temp->rchild != NULL) {
            temp = temp->rchild;
        }
        return temp;
    }
    Node* successor() {
        Node *temp = rchild;
        while (temp != NULL && temp->lchild != NULL) {
            temp = temp->lchild;
        }
        return temp;
    }
    void remove_node(Node* delete_node){
        Node* temp=NULL;
        //temp是删除节点(0度/1度)的孩子,更新孩子节点的父亲指针
        if(delete_node->lchild!=NULL){
            temp=delete_node->lchild;
            temp->father=delete_node->father;
            delete_node->lchild=NULL;
        }
        if(delete_node->rchild!=NULL){
            temp=delete_node->rchild;
            temp->father=delete_node->father;
            delete_node->rchild=NULL;
        }
        //判断删除节点是左孩子还是右孩子
        //更新删除节点的孩子指针
        if(delete_node->father->lchild==delete_node){
            delete_node->father->lchild=temp;
        }
        else{
            delete_node->father->rchild=temp;
        }
        delete delete_node;
    }
};
class BinaryTree {
private:
    Node *root;
public:
    BinaryTree() {
        root = NULL;
    }
    ~BinaryTree() {
        if (root != NULL) {
            delete root;
        }
    }
    void insert(int value) {
        if (root == NULL) {
            root = new Node(value);
        } else {
            root->insert(value);
        }
    }
    bool find(int value) {
        if (root->search(value) == NULL) {
            return false;
        } else {
           return true;
        }
    }
};
int main() {
    BinaryTree binarytree;
    int arr[10] = { 8, 9, 10, 3, 2, 1, 6, 4, 7, 5 };
    for (int i = 0; i < 10; i++) {
        binarytree.insert(arr[i]);
    }
    int value;
    cin >> value;
    if (binarytree.find(value)) {
        cout << "search success!" << endl;
    } else {
        cout << "search failed!" << endl;
    }
    return 0;
}

二叉树的基本操作完整版

#include<iostream>
using namespace std;
class Node {
public:
    int data;
    Node *lchild, *rchild, *father;
    Node(int _data, Node *_father = NULL) {
        data = _data;
        lchild = NULL;
        rchild = NULL;
        father = _father;
    }
    ~Node() {
        if (lchild != NULL) {
            delete lchild;
        }
        if (rchild != NULL) {
            delete rchild;
        }
    }
    void insert(int value) {
        if (value == data) {
            return;
        } else if (value > data) {
            if (rchild == NULL) {
                rchild = new Node(value, this);
            } else {
                rchild->insert(value);
            }
        } else {
            if (lchild == NULL) {
                lchild = new Node(value, this);
            } else {
                lchild->insert(value);
            }
        }
    }
    Node* search(int value) {
        if (data == value) {
            return this;
        } else if (value > data) {
            if (rchild == NULL) {
                return NULL;
            } else {
                return rchild->search(value);
            }
        } else {
            if (lchild == NULL) {
                return NULL;
            } else {
                return lchild->search(value);
            }
        }
    }
    Node* predecessor() {
        Node *temp = lchild;
        while (temp != NULL && temp->rchild != NULL) {
            temp = temp->rchild;
        }
        return temp;
    }
    Node* successor() {
        Node *temp = rchild;
        while (temp != NULL && temp->lchild != NULL) {
            temp = temp->lchild;
        }
        return temp;
    }
    void remove_node(Node *delete_node) {
        Node *temp = NULL;
        if (delete_node->lchild != NULL) {
            temp = delete_node->lchild;
            temp->father = delete_node->father;
            delete_node->lchild = NULL;
        }
        if (delete_node->rchild != NULL) {
            temp = delete_node->rchild;
            temp->father = delete_node->father;
            delete_node->rchild = NULL;
        }
        if (delete_node->father->lchild == delete_node) {
            delete_node->father->lchild = temp;
        } else {
            delete_node->father->rchild = temp;
        }
        delete delete_node;
    }

    //完整版删除操作,考虑2度节点
    bool delete_tree(int value){
        Node *delete_node,*current_node;
        current_node=search(value);
        if(current_node==NULL){
            return false;   
        }
        if(current_node->lchild!=NULL){
            //该节点有左孩子,则指向该节点前驱,后期前驱权值代替当前节点权值
           delete_node=current_node->predecessor();
        }
        else if(current_node->rchild!=NULL){
            //该节点有右孩子,则指向该节点后继,后期后继权值代替当前节点权值
            delete_node=current_node->successor();   
        }
        else{
            delete_node=current_node;   
        }
        current_node->data=delete_node->data;
        remove_node(delete_node);
        return true;
    }

};
class BinaryTree {
private:
    Node *root;
public:
    BinaryTree() {
        root = NULL;
    }
    ~BinaryTree() {
        if (root != NULL) {
            delete root;
        }
    }
    void insert(int value) {
        if (root == NULL) {
            root = new Node(value);
        } else {
            root->insert(value);
        }
    }
    bool find(int value) {
        if (root->search(value) == NULL) {
            return false;
        } else {
           return true;
        }
    }
    bool delete_tree(int value){
        return root->delete_tree(value);
    }
};
int main() {
    BinaryTree binarytree;
    int arr[10] = { 8, 9, 10, 3, 2, 1, 6, 4, 7, 5 };
    for (int i = 0; i < 10; i++) {
        binarytree.insert(arr[i]);
    }
    int value;
    cin >> value;
    if (binarytree.find(value)) {
        cout << "search success!" << endl;
    } else {
        cout << "search failed!" << endl;
    }
    cin>>value;
    if (binarytree.delete_tree(value)) {
        cout << "delete success!" << endl;
    } else {
        cout << "delete failed!" << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值