反走样和深度缓冲
强关联 采样
采样问题
锯齿
摩尔纹
车轮效应
前两个是空间,第三个时间
本质上信号变化太快,采样跟不上速度。
反走样 模糊
先模糊,再采样,反走样。要是先采样,再模糊呢?不行。
频域
f=频率 T周期,根据f判断快慢,还能知道周期T重复一次
傅里叶级数展开
与傅里叶变换概念上相似。
给定一个函数,经过复杂变换,变成新函数,还能变回来,就是傅里叶变换和逆傅里叶变换。
再看,傅里叶级数展开。一个波,经过复杂变化,变成新的波,还能再变回去的过程。
频率越高,采样速度就需要越快,不然走样严重,恢复不出原来的样子。
这两个不同的信号,采样的结果是一样的,这就是走样。
拿一张照片,观察一下它的频谱。发现十字线,就是边缘出现颜色变化较大,左右上下两边不是平和过渡导致的,白色低频,黑色高频。
高通滤波(边界)
低通滤波(模糊)
覆盖卷积(Convolution)
图形学上简化定义,它信号任意一个数取周围加权平均。对信号用某种滤波器使用卷积操作,得到新的信号,卷积操作。为了理解。
卷积定理
实域上的如果对两个信号进行卷积,那对应在频域上两个信号频域上的乘积。
通过定理如何做卷积。
拿到一张图片可以用某一个卷积的滤波器去做一个卷积操作,也可以把这个图先傅里叶变换到频域上,把卷积滤波器也变频域上,这两个直接相乘,得到频域结果,再逆傅里叶变换变到实域上,结果是一致的。实域上的如果对两个信号进行卷积,那对应在频域上两个信号频域上的乘积。
还有 实域的乘积也想当于频域的卷积。
用更大box,只能留下更低的滤波,结果变得更模糊
在频率上看什么是采样,采样就是在重复一个原始信号的频谱。
走样在频谱上,就是有重叠。频域和实域上的有很多相反关系,采样越稀疏,搬运频谱上越密集。
反走样
1.增加采样率。2.高清显示设备,提升分辨率。
对应先模糊再采样方式,拿掉高频信息。
MSAA用更多的采样点来反走样,只是近似,不能解决反走样问题。增大了计算量。4倍?可以使用样本再提升性能。
还有FXAA和TAA。
属于图像后处理过程,与增加样本数没关系,先把锯齿得出,然后做些什么样的操作,在把锯齿弄掉。FXAA,是无锯齿边界,比对,把多出来的锯齿移除。TAA,找上一帧的操作。
Super resolution 一张512*512 拉大到1024*1024,那细节缺失用DLSS方式处理深度学习来估算缺失图像技术。