GAMES101-现代计算机图形学学习笔记(作业03)

GAMES101-现代计算机图形学学习笔记(作业03)

原课程视频链接以及官网
b站视频链接: link.
课程官网链接: link.

作业

作业描述

在这次编程任务中,我们会进一步模拟现代图形技术。我们在代码中添加了 Object Loader(用于加载三维模型), Vertex Shader 与 Fragment Shader,并且支持 了纹理映射。
而在本次实验中,你需要完成的任务是:
1. 修改函数 rasterize_triangle(const Triangle& t) in rasterizer.cpp: 在此 处实现与作业 2 类似的插值算法,实现法向量、颜色、纹理颜色的插值。
2. 修改函数 get_projection_matrix() in main.cpp: 将你自己在之前的实验中 实现的投影矩阵填到此处,此时你可以运行./Rasterizer output.png normal 来观察法向量实现结果。
3. 修改函数 phong_fragment_shader() in main.cpp: 实现 Blinn-Phong 模型计算 Fragment Color.
4. 修改函数 texture_fragment_shader() in main.cpp: 在实现 Blinn-Phong 的基础上,将纹理颜色视为公式中的 kd,实现 Texture Shading Fragment Shader.
5. 修改函数 bump_fragment_shader() in main.cpp: 在实现 Blinn-Phong 的基础上,仔细阅读该函数中的注释,实现 Bump mapping.
6. 修改函数 displacement_fragment_shader() in main.cpp: 在实现 Bump mapping 的基础上,实现 displacement mapping.
7. 双线性纹理插值: 使用双线性插值进行纹理采样, 在 Texture 类中实现一个新方法 Vector3f getColorBilinear(float u, float v) 并 通过 fragment shader 调用它。为了使双线性插值的效果更加明显,你应该 考虑选择更小的纹理图。请同时提交纹理插值与双线性纹理插值的结果,并 进行比较。

思路

①插值

上文我们根据 c o m p u t e B a r y c e n t r i c 2 D ( i + 0.5 , j + 0.5 , t . v ) computeBarycentric2D(i + 0.5, j + 0.5, t.v) computeBarycentric2D(i+0.5,j+0.5,t.v) 函数,利用三角形重心的重心公式,计算出三角形内三个点对中心点的权重:
α = − ( x − x B ) ( y C − y B ) + ( y − y B ) ( x C − x B ) − ( x A − x B ) ( y C − y B ) + ( y A − y B ) ( x C − x B ) β = − ( x − x C ) ( y A − y C ) + ( y − y C ) ( x A − x C ) − ( x B − x C ) ( y A − y C ) + ( y B − y C ) ( x A − x C ) γ = 1 − α − β \begin{array}{l} \alpha=\frac{-\left(x-x_{B}\right)\left(y_{C}-y_{B}\right)+\left(y-y_{B}\right)\left(x_{C}-x_{B}\right)}{-\left(x_{A}-x_{B}\right)\left(y_{C}-y_{B}\right)+\left(y_{A}-y_{B}\right)\left(x_{C}-x_{B}\right)} \\ \beta=\frac{-\left(x-x_{C}\right)\left(y_{A}-y_{C}\right)+\left(y-y_{C}\right)\left(x_{A}-x_{C}\right)}{-\left(x_{B}-x_{C}\right)\left(y_{A}-y_{C}\right)+\left(y_{B}-y_{C}\right)\left(x_{A}-x_{C}\right)} \\ \gamma=1-\alpha-\beta \end{array} α=(xAxB)(yCyB)+(yAyB)(xCxB)(xxB)(yCyB)+(yyB)(xCxB)β=(xBxC)(yAyC)+(yByC)(x

  • 51
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 64
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值