KNN实现手写数字的识别

这篇博客介绍如何利用KNN(K-Nearest Neighbors)算法对手写数字进行识别,通过链接提供了一个数据集,读者可以借此实践算法应用。
摘要由CSDN通过智能技术生成
import numpy as np
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.externals import joblib

# 查看一下数据集的数据

# zero = plt.imread('./knn_num_data/0/0_1.bmp')
# plt.imshow(zero,cmap='gray')
# print(zero.shape)

# 将数据组合成可以训练的数据集

path = './knn_num_data/%d/%d_%d.bmp'

data = []
target = []

for i in range(10):
    for j in range(500):
        im_data = plt.imread(path % (i, i, j + 1))
        data.append(im_data)
        target.append(i)
data = np.array(data)

# print(data.shape)

# knn只能用二维数据 所以更改一下shape
data_ = data.reshape(5000, -1)

# print(data_.shape)

# 分割数据集 选取1%作为测试数据集
X_train, X_test, y_train, y_test = train_test_split(data_, target, test_size=0.01)

# 实例化KNN分类器
knn = KNeighborsClassifier()

knn.fit(X_train, y_train)

# 模型保存路径
save_path_name = 'knn_train_mode
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值